Construct Me!

[br][u]CONSTRUCT A COPY OF A SEGMENT[br][br][/u][list=1][*][b][/b]Select the [b] [/b][b][i][u]Segment[/u][/i][/b] tool [icon]/images/ggb/toolbar/mode_segment.png[/icon]from the menu and create a segment to the right of segment AB[b] (make sure its longer than AB)[/b] by clicking twice anywhere to the right of AB. Creating Segment CD.[b][br][/b][/*][*]Select the [b][i][u]Compass[/u][/i][/b] tool[icon]/images/ggb/toolbar/mode_compasses.png[/icon]:  and select point B, then select point A. Click point C to center the circle at point C.[br][/*][*]Select the [b][i][u]Intersect[/u][/i][/b] tool [icon]/images/ggb/toolbar/mode_intersect.png[/icon] from the menu and select the intersection created by the circle and segment CD, creating point E at the intersection.[/*][*]Select the [u]Distance or Length[/u] tool [icon]/images/ggb/toolbar/mode_distance.png[/icon]from the menu. Select points A and B, then select points C and E. Be sure the two measures are congruent. [/*][*]Use the text tool to type your first and last name as well as your student ID.[/*][/list]
[b][i][u]SEGMENT BISECTOR / PERPENDICULAR BISECTOR CONSTRUCTION[br][/u][/i][/b][list=1][*]Select the [b][u][i]Compass[/i][/u][/b] tool from the menu and select point A, then select point B. Click point A to center the circle at A.[/*][*]Select the [b][i][u]Compass[/u][/i][/b] tool:  and select point B, then select point A. Click point B to center the circle at B.[/*][*]Select the [b][i][u]Intersect[/u][/i][/b] tool from the menu and select the two intersections created by the circles, creating points C and D at the intersections.[/*][*]Select the [b][i][u]Segment[/u][/i][/b] tool from the menu and click on point C, then on point D. Creating an intersection of segment AB and segment CD. [/*][*]Select the [b][i][u]Intersect[/u][/i][/b] tool from the menu and click on the intersection of segment AB and CD. Creating point E. **Point E is the midpoint of segment AB and Segment CD. **[/*][*]Select the [b][u][i]Distance or Length[/i][/u][/b] tool from the menu. Select point A and Point E. Select point B and E. Be sure the two measures are congruent. [/*][*]Use the text tool to type your first and last name as well as your student ID.[/*][/list]
Construct an Angle Bisector
[list=1][*]Select the [b][u][i]Circle with Center through Point[/i][/u][/b] [icon]https://www.geogebra.org/images/ggb/toolbar/mode_circle2.png[/icon]tool from menu. Click on point B and anywhere between point B and C. Creating point D on segment BC. [/*][*]Select the [b][i][u]Intersect[/u][/i][/b] [icon]/images/ggb/toolbar/mode_intersect.png[/icon]tool from the menu. Select the circle created from step 1, and segment AB creating point E at the intersection. [/*][*]Select the [b][u][i]Circle with Center through Point[/i][/u][/b] [icon]https://www.geogebra.org/images/ggb/toolbar/mode_circle2.png[/icon] tool from the menu. Select point D then point E, creating a circle with a radius congruent to DE. [/*][*]Select the [b][u][i]Circle with Center through Point[/i][/u][/b] [icon]https://www.geogebra.org/images/ggb/toolbar/mode_circle2.png[/icon] tool from the menu. Select point E then point D, creating a circle with a radius congruent to DE.[br][/*][*]Select the [b][i][u]Intersect[/u][/i][/b] [icon]https://www.geogebra.org/images/ggb/toolbar/mode_intersect.png[/icon]tool from the menu. Click the circles created from step 2 and 3, and creating point F and point G at the intersections.[br][/*][*]Select the [b][i][u]Ray[icon]/images/ggb/toolbar/mode_ray.png[/icon][/u][/i][/b] tool from the menu. Click vertex B and either point G OR F. Creating Ray BG, or BF which bisects angle ABC.[/*][*]Select the [b][i][u]angle[/u][/i][/b] [icon]/images/ggb/toolbar/mode_angle.png[/icon]tool from the menu. Click points D, then B, then F, creating angle DBF. [/*][*]Select the [b][i][u]angle[/u][/i][/b] [icon]/images/ggb/toolbar/mode_angle.png[/icon]tool from the menu. Click points F, then B, then E, creating angle FBE.[/*][*]Compare angles DBF and FBE to make sure they're congruent. [/*][/list]
Constructing Parallel Lines
[list=1][*]Select the [b][i][u]line[/u][/i][/b] [icon]/images/ggb/toolbar/mode_join.png[/icon]tool from the menu. Click point A and anywhere below segment BC. [/*][*]Select the [b][i][u]intersect[/u][/i][/b] [icon]/images/ggb/toolbar/mode_intersect.png[/icon]tool from the menu and select line AD and segment BC. Creating vertex E and angle CEA. [/*][*]Select the [b][i][u]Circle with Center Though Point[/u][/i][/b] [icon]/images/ggb/toolbar/mode_circle2.png[/icon]tool from the menu. Click on vertex E and anywhere between points E and C on segment BC creating point F. *be sure that the circle created does not go beyond point A. [/*][*]Select the [u][i][b]intersect[/b][/i][/u] [icon]/images/ggb/toolbar/mode_intersect.png[/icon]tool from the menu and select circle E then line AD. Creating point G between segment EA.[br][/*][*]Select the [b][u][i]Compass[/i][/u][/b] [icon]/images/ggb/toolbar/mode_compasses.png[/icon]tool from the menu and click vertex E, then point F, then click point A to center the circle at point A. [/*][*]Select the [u][i][b]intersect[/b][/i][/u] [icon]/images/ggb/toolbar/mode_intersect.png[/icon]tool from the menu and select circle A then line AD. Creating point I above point A.[br][/*][*]Select the [b][u][i]Compass[/i][/u][/b] [icon]/images/ggb/toolbar/mode_compasses.png[/icon]tool from the menu and click point G, then point F, then click point I to center the circle at point I and create an intersection of circle A and circle I. [/*][*]Select the [i][b][u]intersect[/u] [u][icon]/images/ggb/toolbar/mode_intersect.png[/icon][/u][/b][/i] tool from the menu and select circle A, then circle I. Creating a points K and L at the intersections. [/*][*]Select the[b][i] [u]Line[/u] [icon]/images/ggb/toolbar/mode_join.png[/icon] [/i][/b]tool from the menu and click points A and K, creating line AK that is parallel to segment BC. [/*][/list]
Process Questions:
1. How did you find the activity?
2. Were you able to construct all line segment and angle bisector,[br]perpendicular and parallel lines correctly?
3. If not, what do you think is the hindering factor to it?
4. What do you think the importance of compass and straightedge in[br]constructing segment and angle bisector, and constructing parallel and[br]perpendicular lines?
Close

Information: Construct Me!