IM 6.6.10 Practice: The Distributive Property, Part 2

Here is a rectangle.
[img][/img][br][br]Explain why the area of the large rectangle is [math]2a+3a+4a[/math].
Explain why the area of the large rectangle is [math](2+3+4)a[/math].
[size=150]Is the area of the shaded rectangle [math]6(2-m)[/math] or [math]6(m-2)[/math]? [/size][br][br][img][/img][br][br]Explain how you know.
[size=150]Choose the expressions that do [i]not[/i] represent the total area of the rectangle. Select [b]all[/b] that apply.[/size][br][img][/img]
Evaluate each expression mentally.
[math]35\cdot91-35\cdot89[/math]
[math]22\cdot87+22\cdot13[/math]
[math]\frac{9}{11}\cdot\frac{7}{10}-\frac{9}{11}\cdot\frac{3}{10}[/math]
[size=150]Select [b]all[/b] the expressions that are equivalent to [math]4b[/math].[/size]
Solve each equation. Show your reasoning.
[math]111=14a[/math]
[math]13.65=b+4.88[/math]
[math]c+\frac{1}{3}=5\frac{1}{8}[/math]
[math]\frac{2}{5}d=\frac{17}{4}[/math]
[math]5.16=4e[/math]
Andre ran [math]5\frac{1}{2}[/math] laps of a track in 8 minutes at a constant speed. It took Andre [math]x[/math] minutes to run each lap. Select [b]all[/b] the equations that represent this situation.
Close

Information: IM 6.6.10 Practice: The Distributive Property, Part 2