Exercise 5.3[br][img][/img][br][br]1. (a) Express [math] 2\sin A \cos B [/math] into the sum or difference of Sine or Cosine.[br]Solution:[br][math] 2\sin A \cos B = \sin (A+B) + \sin (A-B) [/math][br][br]1. (b) Express [math] 2\cos A \cos B [/math] into the sum or difference of Cosine.[br]Solution:[br][math]2\cos A \cos B = \cos (A+B) + \cos (A - B) [/math][br][br]1. (c) Reduce [math]2\sin x \sin y [/math] into the sum or difference of Cosine.[br]Solution:[br][math]2\sin x \sin y = 2\cos (x-y) - 2\cos (x+y) [/math][br][br]2. (a) Express [math] \sin C + \sin D [/math] into the product form of Sine and Cosine.[br]Solution:[br][math] \sin C + \sin D = 2\sin \left( \frac{C+D}{2}\right) \cos \left( \frac{C-D}{2}\right) [/math][br][br]2. (b) Express [math] \cos \alpha - \cos \beta [/math] into the product form of sine. [br]Solution:[br][math] \cos \alpha - \cos \beta = 2\sin\left( \frac{\alpha + \beta }{2}\right)\sin\left( \frac{\beta - \alpha }{2}\right) [/math][br][br]3.(a) If [math] \sin (A+B) = \frac{1}{4} [/math] and [math] \sin (A-B) = \frac{3}{4} [/math], find the value of [math] 2\sin A. \cos B [/math].[br]Solution:[br][math] \begin{align}[br] 2\sin A . \cos B \ & = \sin (A+B) - \sin(A-B) \\[br] \ & = \frac{1}{4} + \frac{3}{4} \\[br] \ & = \frac{1+3}{4}\\[br] \ & = \frac{4}{4}\\[br] \ & = 1 \\[br]\end{align} [/math][br][br]3.(b) If [math] \cos (A-B) = \frac{2}{3} [/math] and [math] \cos (A+B) = \frac{1}{3} [/math], find the value of [math] 2\cos A. \cos B [/math].[br]Solution:[br][math] \begin{align}[br] 2\cos A . \cos B \ & = \cos (A-B) + \sin(A+B) \\[br] \ & = \frac{2}{3} + \frac{1}{3} \\[br] \ & = \frac{2+1}{3}\\[br] \ & = \frac{3}{3}\\[br] \ & = 1 \\[br]\end{align} [/math][br][br]4. (a) Find the value of: [math] \cos 70^{\circ} - \cos40^{\circ} [/math][br]Solution:[br][math] \begin{align}[br] \ & \ \ \cos 70^{\circ} - \cos40^{\circ}\\[br] \ & = 2\sin \frac{70^{\circ}+40^{\circ}}{2} \sin \frac{40^{\circ}-70^{\circ}}{2}\\[br] \ & =2 \sin \frac{110^{\circ}}{2} \sin \frac{-30^{\circ}}{2}\\[br] \ & = 2 \sin 55^{\circ}\sin (-15^{\circ})\\[br] \ & = -2\sin 15^{\circ} \sin 55^{\circ}\\[br]\end{align} [/math][br]4. (b) Find the value of: [math] \cos 15^{\circ} - \cos75^{\circ} [/math][br]Solution:[br][math] \begin{align}[br] \ & \ \ \cos 15^{\circ} - \cos75^{\circ}\\[br] \ & = 2\sin \frac{15^{\circ}+75^{\circ}}{2} \sin \frac{75^{\circ}-15^{\circ}}{2}\\[br] \ & =2 \sin \frac{90^{\circ}}{2} \sin \frac{60^{\circ}}{2}\\[br] \ & = 2 \sin 45^{\circ}\sin (30^{\circ})\\[br] \ & = 2\times \frac{1}{\sqrt{2}}\times \frac{1}{2}\\[br] \ & = \frac{1}{\sqrt{2}}\\[br]\end{align} [/math][br]4. (c) Find the value of: [math] \cos 105^{\circ} + \cos15^{\circ} [/math][br]Solution:[br][math] \begin{align}[br] \ & \ \ \cos 105^{\circ} + \cos15^{\circ}\\[br] \ & = 2\cos \frac{105^{\circ}+15^{\circ}}{2} \cos \frac{105^{\circ}-15^{\circ}}{2}\\[br] \ & =2 \cos \frac{120^{\circ}}{2} \cos \frac{90^{\circ}}{2}\\[br] \ & = 2 \cos 60^{\circ}\cos 45^{\circ} \\ \ & = 2\times \frac{1}{2}\times \frac{1}{\sqrt{2}}\\[br] \ & = \frac{1}{\sqrt{2}}\\[br]\end{align} [/math][br]4. (d) Find the value of: [math] \sin 75^\circ \sin 15^{\circ} [/math][br]Solution: [br][math] \begin{align}[br] \ & \sin 75^\circ \sin 15^{\circ} \\[br] \ & = \frac{1}{2} [2\sin 75^\circ \sin 15^{\circ}]\\[br] \ & = \frac{1}{2} [\cos (75^\circ - 15^\circ) - \cos (75^\circ+15^\circ)]\\[br] \ & = \frac{1}{2}[ \cos 60^\circ - \cos 90^\circ ]\\[br] \ & = \frac{1}{2} \left[ \frac{1}{2} - 0 \right]\\[br] \ & = \frac{1}{2} \left[ \frac{1}{2} \right]\\[br] \ & = \frac{1}{2} \times \frac{1}{2}\\[br] \ & = \frac{1}{4}[br] \end{align} [/math][br]4. (e) Find the value of: [math]4 \sin 105^{\circ} \sin15^{\circ} [/math][br]Solution:[br][math] \begin{align}[br] \ & 4 \sin 105^{\circ} \sin15^{\circ}\\[br] \ & = 2 \left[ 2 \sin 105^{\circ} \sin15^{\circ}\right]\\[br] \ & = 2 \left[ \cos (105^{\circ}-15^{\circ} - \cos (105^{\circ}+ 15^{\circ} ) \right]\\[br] \ & = 2 \left( \cos 90^{\circ} - \cos 120^{\circ} \right)\\[br] \ & = 2 \left( 0 + \frac{1}{2} \right)\\[br] \ & = 2\times \frac{1}{2}\\[br] \ & = 1\\[br] \ & = \text{RHS}\\[br]\end{align} [/math][br]4. (f) Find the value of: [math] \cos 15^{\circ} \cos105^{\circ} [/math][br]Solution:[br][math] \begin{align}[br] \ & \cos 15^{\circ} \cos105^{\circ}\\[br] \ & = \frac{1}{2} [2\cos 15^{\circ} \cos105^{\circ} ]\\[br] \ & = \frac{1}{2} [\cos (15^{\circ}+105^{\circ}) + \cos (15^{\circ}-105^{\circ})]\\[br] \ & = \frac{1}{2}[ \cos 120^{\circ} + \cos (-90^{\circ}) ]\\[br] \ & = \frac{1}{2}\left[ \frac{-1}{2}+ \cos 90^{\circ}\right]\\[br] \ & = \frac{1}{2}\left[ \frac{-1}{2} + 0 \right]\\[br] \ & = \frac{1}{2}\left[ \frac{-1}{2} \right]\\[br] \ & = \frac{-1}{4}\\[br]\end{align} [/math][br]5. (a) Express the following product into sum or difference form:[br] [math] \sin 61^{\circ} \sin43^{\circ} [/math][br]Solution:[br][math] \begin{align}[br] \ & \sin 61^{\circ} \sin43^{\circ}\\[br] \ & = \frac{1}{2}[2\sin 61^{\circ} \sin43^{\circ}]\\[br] \ & = \frac{1}{2} [ \cos (61^{\circ}-43^{\circ}) - \cos (61^{\circ} + 43^{\circ} )]\\[br] \ & = \frac{1}{2}[\cos 18^{\circ} - \cos 104^{\circ} ]\\[br]\end{align} [/math][br]5. (b) Express the following product into sum or difference form:[br] [math] \sin 36^{\circ} \sin24^{\circ} [/math][br]Solution:[br][math] \begin{align}[br] \ & \sin 36^{\circ} \sin24^{\circ}\\[br] \ & = \frac{1}{2} [ 2\sin 36^{\circ} \sin24^{\circ}]\\[br] \ & = \frac{1}{2} [\cos (36^{\circ}- 24^{\circ}) - \cos ( 36^{\circ}+24^{\circ})]\\[br] \ & = \frac{1}{2}[ \cos 12^{\circ}-\cos 60^{\circ}]\\[br] \ & = \frac{1}{2}\left[ \cos 12^{\circ}- \frac{1}{2}\right]\\[br]\end{align} [/math][br]5. (c) Express the following product into sum or difference form:[br] [math] \cos 140^{\circ} \cos40^{\circ} [/math][br]Solution:[br][math] \begin{align}[br] \ & \cos 140^{\circ} \cos40^{\circ} \\[br] \ & = \frac{1}{2} \left[ 2\cos 140^{\circ} \cos40^{\circ} \right]\\[br] \ & = \frac{1}{2} \left[ \cos (140^{\circ}+40^{\circ})+\cos (140^{\circ}-40^{\circ}) \right]\\[br] \ & = \frac{1}{2} \left[ \cos 180^{\circ} + \cos 100^{\circ} \right]\\[br] \ & = \frac{1}{2} \left[ -1 + \cos 100^{\circ} \right]\\[br] \ & = \frac{1}{2} \left[ \cos 100^{\circ} -1 \right][br]\end{align} [/math][br]5. (d) Express the following product into sum or difference form:[br] [math] 2\sin 48^{\circ} \cos32^{\circ} [/math][br]Solution:[br][math] \begin{align}[br] \ & 2\sin 48^{\circ} \cos32^{\circ}\\[br] \ & = \sin (48^{\circ}+32^{\circ}) + \cos(48^{\circ}-32^{\circ})\\[br] \ & = \sin 80^{\circ} + \cos 16^{\circ} \\[br]\end{align} [/math][br]5. (e) Express the following product into sum or difference form:[br] [math] 2\sin 5\theta \cos 2\theta [/math][br]Solution:[br][math] \begin{align}[br] \ & 2\sin 5\theta \cos 2\theta\\[br] \ & = \sin (5\theta +2\theta) + \sin (5\theta -2\theta)\\[br] \ & = \sin 7\theta + \sin 3\theta \\[br]\end{align} [/math][br]5. (f) Express the following product into sum or difference form.:[br] [math] 2\sin 9\theta . \cos 7\theta [/math][br]Solution:[br][math] \begin{align}[br] \ & \sin 9\theta \cos 7\theta \\[br] \ & = \frac{1}{2}[2\sin 9\theta \cos 7\theta] \\[br] \ & = \frac{1}{2}[\sin (9\theta + 7 \theta ) + \sin (9\theta -7\theta)] \\[br] \ & = \frac{1}{2}[\sin 16\theta + \sin 2\theta] \\[br]\end{align} [/math][br]5. (g) Express the following product into sum or difference form:[br] [math] 2\cos 11\theta . \cos 3\theta [/math][br]Solution:[br][math] \begin{align}[br] \ & 2\cos 11\theta . \cos 3\theta \\[br] \ & = \cos (11\theta + 3\theta) + \cos (11\theta -3\theta) \\[br] \ & = \cos 14\theta + \cos 8 \theta \\[br]\end{align} [/math][br]5. (h) Express the following product into sum or difference form:[br] [math] 2\sin 7\theta . \sin 3\theta [/math][br]Solution:[br][math] \begin{align}[br] \ & 2\sin 7\theta . \sin 3\theta \\[br] \ & = \cos (7\theta -3\theta) - \cos (7\theta +3\theta) \\[br] \ & = \cos 4\theta -\cos 10\theta \\[br]\end{align} [/math][br][br]6. (a) Express the following sum or difference into product form.[br]Solution:[br][math] \begin{align}[br]\ & \cos 65^{\circ} + \cos 25^{\circ}\\[br]\ & = 2\cos \frac{ 65^{\circ}+ 25^{\circ}}{2}\cos \frac{ 65^{\circ}- 25^{\circ}}{2} \\[br]\ & = 2\cos \frac{ 90^{\circ}}{2} \cos \frac{40^{\circ}}{2} \\[br]\ & = 2\cos 45^{\circ} \cos 20^{\circ} \\[br]\ & = 2\times \frac{1}{\sqrt{2}} \cos 20^{\circ} \\[br]\ & = (\sqrt{2})^2 \times \frac{1}{\sqrt{2}} \cos 20^{\circ} \\[br]\ & = \sqrt{2} \cos 20^{\circ} \\[br]\end{align} [/math][br][br]6. (b) Express the following sum or difference into product form.[br]Solution:[br][math] \begin{align}[br]\ & \sin 46^{\circ} - \sin 20^{\circ}\\[br]\ & = 2\cos \frac{46^{\circ}+20^{\circ}}{2}\sin \frac{46^{\circ}-20^{\circ}}{2}\\[br]\ & = 2 \cos \frac{66^{\circ}} {2} \sin \frac{ 26^{\circ}}{2}\\[br]\ & = 2 \cos 33^{\circ} \sin 13^{\circ}\\[br]\end{align} [/math][br][br]6. (c) Express the following sum or difference into product form.[br]Solution:[br][math] \begin{align}[br]\ & \cos 70^{\circ} + \cos 30^{\circ}\\[br]\ & = 2\cos \frac{ 70^{\circ}+ 30^{\circ}}{2}\cos \frac{ 70^{\circ}- 30^{\circ}}{2} \\[br]\ & = 2\cos \frac{ 100^{\circ}}{2} \cos \frac{40^{\circ}}{2} \\[br]\ & = 2\cos 50^{\circ} \cos 20^{\circ} \\[br]\end{align} [/math][br][br]6. (d) Express the following sum or difference into product form.[br]Solution:[br][math] \begin{align}[br]\ & \sin 7\theta- \sin 3\theta\\[br]\ & = 2\cos \frac{7\theta+3\theta}{2}\sin \frac{7\theta-3\theta}{2}\\[br]\ & = 2 \cos \frac{10\theta} {2} \sin \frac{4\theta}{2}\\ [br]\ & = 2 \cos 5\theta \sin 2\theta [br]\end{align} [/math][br][br]6. (e) Express the following sum or difference into product form.[br]Solution:[br][math] \begin{align}[br]\ &\sin 11\theta + \sin 3\theta\\[br]\ & = 2\sin \frac{11\theta +3\theta}{2} \cos \frac{11\theta - 3\theta }{2} \\[br]\ & = 2\sin \frac{14\theta}{2} \cos \frac{8\theta}{2}\\[br]\ & = 2\sin 7\theta \cos 4\theta\\[br]\end{align} [/math][br][br]6. (f) Express the following sum or difference into product form.[br]Solution:[br][math] \begin{align}[br]\ & \cos 15\alpha + \cos 5\alpha \\[br]\ & = \cos \frac{ 15\alpha +5\alpha}{2} \cos \frac{15\alpha -5\alpha}{2}\\[br]\ & = \cos \frac{20\alpha}{2} \cos \frac{10\alpha}{2}\\[br]\ & = \cos 10\alpha \cos 5\alpha\\[br]\end{align} [/math][br][br]7. (a) Prove that: [math] \sin 5A +\sin 7A = \sin 6A \cos A [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS}\ &=\sin 5A +\sin 7A \\[br]\ & = \sin \frac{5A+7A}{2}\cos \frac{5A -7 A}{2} \\[br]\ & = \sin \frac{12A }{2} \cos \frac{-2A}{2}\\[br]\ & = \sin 6A \cos (-A)\\[br]\ & = \sin 6A \cos A \\[br]\ & = \text{ RHS}[br]\end{align} [/math][br][br]7. (b) [math] \cos A + \cos 7A = \cos 4A \cos 3A [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & =\cos A + \cos 7A \\[br]\ & = \cos \frac{A+7A}{2} \cos \frac{A-7A}{2}\\[br]\ & = \cos \frac{8A}{2} \cos \frac{-6A}{2}\\[br]\ & = \cos 4A \cos (-3A) \\[br]\ & = \cos 4A \cos 3A \\[br]\ & = \text{ RHS}[br]\end{align} [/math][br][br]7(c) [math] \frac{\cos B -\cos A}{\cos A + \cos B} = \tan \frac{A+B}{2} \tan \frac{A-B}{2} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \frac{\cos B -\cos A}{\cos A + \cos B}\\[br]\ & = \frac{ 2\sin \frac{A+B}{2} \sin \frac{A-B}{2} }{2\cos \frac{A+B}{2} \cos \frac{A-B}{2}} \\[br]\ & =\frac{\sin \frac{A+B}{2}}{\cos \frac{A+B}{2}}\times \frac{\sin \frac{A-B}{2}}{\cos \frac{A-B}{2}}\\[br]\ & = \tan \frac{A+B}{2} \tan \frac{A-B}{2}\\[br]\ & =\text{RHS}[br]\end{align} [/math][br][br]7. (d) [math] \frac{\sin A + \sin B}{\sin A - \sin B} = \tan \frac{A+B}{2} \cot \frac{A-B}{2} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS}\ & =\frac{\sin A + \sin B}{\sin A - \sin B}\\[br]\ & = \frac{2\sin \frac{A+B}{2} \cos \frac{A-B}{2}}{2\cos \frac{A+B}{2}\sin \frac{A-B}{2}}\\[br]\ &=\frac{ \sin \frac{A+B}{2}}{\cos \frac{A+B}{2}} \times \frac {\cos \frac{A-B}{2}}{\sin \frac{A-B}{2}}\\[br]\ & = \tan \frac{A+B}{2} \cot \frac{A-B}{2}\\[br]\end{align} [/math][br][br]7. (e) [math] \sin 4\theta \cos 2\theta + \cos 3\theta \sin \theta = \sin 5\theta \cos \theta [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS}\ & =\sin 4\theta \cos 2\theta + \cos 3\theta \sin \theta \\[br]\ & =\frac{1}{2} [2\sin 4\theta \cos 2\theta + 2\cos 3\theta \sin \theta ]\\[br]\ & = \frac{1}{2} \left[ \sin (4\theta + 2\theta) + \sin (4\theta - 2\theta)+ \sin (3\theta + \theta) - \sin (3\theta - \theta) \right] \\[br]\ & = \frac{1}{2} [ \sin 6\theta + \sin 2\theta + \sin 4\theta -\sin 2\theta ]\\[br]\ & = \frac{1}{2} [ \sin 6\theta + \sin 4\theta ]\\[br]\ & = \frac{1}{2} \left[ 2\sin \frac{6\theta +4\theta}{2} \cos \frac{6\theta - 4\theta}{2} \right] \\[br]\ & =\sin \frac{10\theta}{2} \cos \frac{2\theta}{2} \\[br]\ & = \sin 5\theta \cos \theta \\[br]\ & = \text{ RHS}\\[br]\end{align} [/math][br][br]7. (f) [math] \sin \frac{11\alpha}{4} \sin \frac{\alpha}{4} + \sin \frac{7\alpha}{4} \sin \frac{3\alpha}{4} = \sin 2\alpha \sin \alpha [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS}\ & = \sin \frac{11\alpha}{4} \sin \frac{\alpha}{4} + \sin \frac{7\alpha}{4} \sin \frac{3\alpha}{4} \\[br]\ & = \frac{1}{2}\left[2\sin \frac{11\alpha}{4} \sin \frac{\alpha}{4} + 2\sin \frac{7\alpha}{4} \sin \frac{3\alpha}{4}\right]\\ [br]\ & = \left[ \cos \left( \frac{11\alpha}{4} - \frac{\alpha}{4} \right) - \cos \left( \frac{11\alpha}{4} + \frac{\alpha}{4} \right)+ \cos \left( \frac{7\alpha}{4} - \frac{3\alpha}{4} \right)- \cos \left( \frac{7\alpha}{4} + \frac{3\alpha}{4} \right) \right]\\[br]\ & = \frac{1}{2} \left( \cos \frac{11\alpha-\alpha}{4} - \cos \frac{11\alpha + \alpha}{4} + \cos \frac{7\alpha -3\alpha}{4} -\cos \frac{7\alpha +3\alpha}{4} \right)\\[br]\ & = \frac{1}{2} \left( \cos \frac{10\alpha}{4} -\cos \frac{12\alpha}{4} + \cos \frac{4\alpha}{4} - \cos \frac{10\alpha}{4} \right)\\[br]\ & = \frac{1}{2} \left( \cos \alpha - \cos 3\alpha \right)\\[br]\ & = \frac{1}{2}\times 2 \sin \frac{\alpha +3 \alpha}{2} \sin \frac{3\alpha - \alpha}{2} \\[br]\ & = \sin \frac{4\alpha}{2} \sin \frac{2\alpha}{2}\\[br]\ & = \sin 2\alpha \sin \alpha\\[br]\ & = \text{RHS}[br]\end{align} [/math][br][br]7. (g) [math]\frac{ \cos 10^{\circ} - \sin 10^{\circ} }{ \cos 10^{\circ} + \sin 10^{\circ} = \tan 35^{\circ} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \frac{ \cos 10^{\circ} - \sin 10^{\circ} }{ \cos 10^{\circ} + \sin 10^{\circ} }\\[br]\ & = \frac{ \sin (90^{\circ}- 10^{\circ}) - \sin 10^{\circ} }{ \sin( 90^{\circ} - 10^{\circ}) + \sin 10^{\circ} }\\[br]\ & = \frac{ \sin 80^{\circ} - \sin 10^{\circ} }{ \sin 80^{\circ} + \sin 10^{\circ} }\\[br]\ & = \frac{2\cos \frac{80^{\circ}+10^{\circ} }{2} \sin \frac{80^{\circ} - 10^{\circ} }{2} }{ 2\sin \frac{80^{\circ}+10^{\circ} }{2} \cos \frac{80^{\circ} - 10^{\circ} }{2} }\\[br]\ & = \frac{\cos 45^{\circ} \sin 35^{\circ}}{\sin 45^{\circ} \cos 35^{\circ}}\\[br]\ & = \frac{ \frac{1}{\sqrt {2}} \sin 35^{\circ} }{ \frac{1}{\sqrt {2}} \cos 35^{\circ} }\\[br]\ & = \frac{ \sin 35^{\circ}}{\cos 35^{\circ} }\\[br]\ & = \tan 35^{\circ}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]7. (h) [math] \frac{ \cos 75^{\circ} + \cos 15^{\circ} }{ \sin 75^{\circ} - \sin 15^{\circ} } = \sqrt{3} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \frac{ \cos 75^{\circ} + \cos 15^{\circ} }{ \sin 75^{\circ} - \sin 15^{\circ} }\\[br]\ & = \frac{ 2 \cos \frac{75^{\circ}+ 15^{\circ}}{2} \cos \frac{75^{\circ}- 15^{\circ}}{2} }{2 \cos \frac{75^{\circ}+ 15^{\circ}}{2} \sin \frac{75^{\circ} - 15^{\circ}}{2} }\\[br]\ & = \frac{\cos \frac{60^{\circ}}{2}}{\sin \frac{60^{\circ}}{2}}\\[br]\ & = \frac{ \cos 30^{\circ} }{ \sin 30^{\circ} } \\[br]\ & = \cot 30^{\circ} \\[br]\ & = \sqrt{3}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]8. (a) [math] \sin 75^{\circ} + \sin 75^{\circ} = \sqrt{\frac{3}{2} } [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \sin 75^{\circ} + \sin 75^{\circ} \\[br]\ & = 2\sin \frac{ 75^{\circ} +15^{\circ} }{2}\cos \frac{ 75^{\circ} -15^{\circ} }{2}\\[br]\ & = 2\sin \frac {90^{\circ}}{2} \cos \frac{60^{\circ}}{2}\\[br]\ & = 2\sin 45^{\circ} \cos 30^{\circ}\\[br]\ & = 2\times \frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2}\\[br]\ & = \frac{ \sqrt{3}}{\sqrt{2}}\\[br]\ & = \sqrt{\frac{3}{2} }\\[br]\ & = \text{RHS}[br]\end{align} [/math][br][br]8. (b) [math] \sin 50^{\circ} + \sin 70^{\circ} = \sqrt{3} \cos 10^{\circ} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \sin 50^{\circ} + \sin 70^{\circ} \\[br]\ & = 2\sin \frac{ 50^{\circ} +70^{\circ} }{2}\cos \frac{ 50^{\circ} -70^{\circ} }{2}\\[br]\ & = 2\sin \frac {120^{\circ}}{2} \cos \frac{-20^{\circ}}{2}\\[br]\ & = 2\sin 60^{\circ} \cos (-10^{\circ})\\[br]\ & = 2\times \frac{\sqrt{3}}{2}\times \cos 10^{\circ}\\[br]\ & = \sqrt{3} \cos 10^{\circ}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]8. (c) Prove that: [math] \cos 40^{\circ} + \sin 40^{\circ} = \sqrt{2} \cos 5^{\circ} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \cos 40^{\circ} + \sin 40^{\circ} \\[br]\ & = \sin (90^{\circ}-40^{\circ}) + \sin 40^{\circ} \\[br]\ & = \sin 50^{\circ} + \sin 40^{\circ} \\[br]\ & = 2\sin \frac{ 50^{\circ} +40^{\circ} }{2}\cos \frac{ 50^{\circ} -40^{\circ} }{2}\\[br]\ & = 2\sin \frac {90^{\circ}}{2} \cos \frac{10^{\circ}}{2}\\[br]\ & = 2\sin 45^{\circ} \cos (5^{\circ})\\[br]\ & = 2\times \frac{1}{\sqrt{2}}\times \cos 5^{\circ}\\[br]\ & = \left(\sqrt{2}\right)^2 \times \frac{1} { \sqrt{2}} \cos 5^{\circ}\\[br]\ & = \sqrt{2} \cos 5^{\circ}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]8. (d) Prove that: [math] \cos 40^{\circ} - \sin 40^{\circ} = \sqrt{2} \sin 5^{\circ} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \cos 40^{\circ} - \sin 40^{\circ} \\[br]\ & = \sin (90^{\circ}-40^{\circ}) - \sin 40^{\circ} \\[br]\ & = \sin 50^{\circ} - \sin 40^{\circ} \\[br]\ & = 2\cos \frac{ 50^{\circ} +40^{\circ} }{2}\sin \frac{ 50^{\circ} -40^{\circ} }{2}\\[br]\ & = 2\cos \frac {90^{\circ}}{2} \sin \frac{10^{\circ}}{2}\\[br]\ & = 2\cos 45^{\circ} \sin (5^{\circ})\\[br]\ & = 2\times \frac{1}{\sqrt{2}}\times \sin 5^{\circ}\\[br]\ & = \left(\sqrt{2}\right)^2 \times \frac{1} { \sqrt{2}} \sin 5^{\circ}\\[br]\ & = \sqrt{2} \sin 5^{\circ}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]8. (e) Prove that: [math]\sin 10^{\circ} + \cos 40^{\circ} = \cos 20^{\circ} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \sin 10^{\circ} + \cos 40^{\circ} \\[br]\ & = \sin 10^{\circ} + \sin (90^{\circ}- 40^{\circ}) \\[br]\ & = \sin 10^{\circ} + \sin (50^{\circ}) \\[br]\ & = 2 \sin \frac {10^{\circ}+50^{\circ}}{2}\cos \frac {10^{\circ}-50^{\circ}}{2}\\[br]\ & = 2\sin \frac{60^{\circ}}{2}\cos \frac{-40^{\circ}}{2}\\[br]\ & = 2\sin 30^{\circ} \cos 20 ^{\circ}\\[br]\ & = 2\times \frac{1}{2} \cos 20^{\circ}\\[br]\ & = \cos 20^{\circ}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]8. (f) Prove that: [math]\cos 56^{\circ} + \sin 86^{\circ}= \sqrt{3} \cos 26^{\circ} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \cos 56^{\circ} + \sin 86^{\circ} \\[br]\ & = \sin(90^{\circ}-56^{\circ}) + \sin 86^{\circ} \\[br]\ & = \sin 34^{\circ} + \sin 86^{\circ} \\[br]\ & = 2\sin \frac{34^{\circ}+86^{\circ}}{2} \cos \frac{34^{\circ}-86^{\circ}}{2}\\[br]\ & = 2\sin \frac{120^{\circ}}{2} \cos \frac{-52}{2}\\[br]\ & =2 \sin 60^{\circ} \cos 26^{\circ}\\[br]\ & = 2\times \sqrt{3}{2} \times \cos 26^{\circ}\\[br]\ & = \sqrt{3} \cos 26^{\circ}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]9. (a) Prove that: [math]2\cos(45^{\circ} + \theta). \cos (45^{\circ}-\theta) = 2\cos 2\theta [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = 2\cos(45^{\circ} + \theta). \cos (45^{\circ}-\theta)\\[br]\ & = \cos \left[( 45^{\circ} + \theta) + (45^{\circ}-\theta) \right] + \cos \left[ 45^{\circ} + \theta - (45^{\circ}-\theta) \right]\\[br]\ & = \cos ( 45^{\circ} + \theta + 45^{\circ}-\theta) + \cos (45^{\circ} + \theta - 45^{\circ}+\theta) \\[br]\ & = \cos 90^{\circ} + \cos 2\theta \\[br]\ & = 0 + 2\cos 2\theta\\[br]\ & = 2\cos 2\theta\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]10. (d) Prove that: [math] \frac{\sin 5\theta + \sin 2\theta -\sin \theta}{\cos 5\theta + \cos 2\theta + \cos \theta} = \tan 2\theta [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \frac{\sin 5\theta + \sin 2\theta -\sin \theta}{\cos 5\theta + \cos 2\theta + \cos \theta}\\[br]\ & = \frac{\sin 5\theta -\sin \theta+\sin 2\theta }{\cos 5\theta+ \cos \theta + \cos 2\theta }\\[br]\ & = \frac{2\cos \frac{ 5\theta + \theta}{2} \sin \frac{5\theta -\theta}{2} + \sin 2\theta}{2\cos \frac{5\theta+\theta}{2} \cos \frac{5\theta- \theta}{2} + \cos 2\theta }\\[br]\ & = \frac{ 2\cos \frac{6\theta}{2} \sin \frac{4\theta}{2} + \sin 2\theta}{ 2\cos \frac{6\theta}{2} \sin \frac{4\theta}{2} + \cos 2\theta }\\[br]\ & = \frac{2\cos 3\theta \sin 2\theta + \sin 2\theta}{2\cos 3\theta\cos 2\theta + \cos 2\theta}\\[br]\ & = \frac{ \sin 2\theta ( 2\cos 3\theta + 1) }{ \cos 2\theta(2\cos 3\theta +1) }\\[br]\ & = \frac{\sin 2\theta}{\cos 2\theta}\\[br]\ & = \tan 2\theta \\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]10. (e) Prove that: [math] \frac{\cos \theta - \cos 2\theta + \cos 3\theta}{\sin \theta - \sin 2\theta + \sin 3\theta } = \cot 2\theta [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & =\frac{\cos \theta - \cos 2\theta + \cos 3\theta}{\sin \theta - \sin 2\theta + \sin 3\theta } \\[br]\ & = \frac{\cos 3\theta + \cos \theta - \cos 2\theta}{\sin 3\theta + \sin \theta -\sin 2\theta}\\[br]\ & = \frac{ 2\cos \frac{3\theta + \theta}{2} \cos \frac{3\theta -\theta}{2} - \cos 2\theta}{ 2\sin \frac{3\theta+\theta}{2} \cos \frac{3\theta - \theta}{2} - \sin 2\theta}\\[br]\ & = \frac{2\cos \frac{4\theta}{2} \cos \frac{2\theta}{2} - \cos 2\theta} { 2\sin \frac{4\theta}{2} \cos \frac{2\theta}{2} -\sin 2\theta}\\[br]\ & = \frac{2\cos 2\theta \cos \theta -\cos 2\theta}{2\sin 2\theta \cos \theta - \sin 2\theta}\\[br]\ & = \frac {\cos 2\theta ( 2\cos \theta - 1)}{\sin 2\theta (2\cos \theta -1)}\\[br]\ & = \frac{\cos 2\theta}{\sin 2\theta}\\[br]\ & = \cot 2\theta\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]10. (f) Prove that: [math] \frac{\sin 25^{\circ} +\sin 20^{\circ}+\sin 10^{\circ} + \sin 5^{\circ}}{\cos 5^{\circ}+\cos 10^{\circ} + \cos 20^{\circ}+\cos 25^{\circ}} = \tan 15^{\circ} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \frac{\sin 25^{\circ} +\sin 20^{\circ}+\sin 10^{\circ} + \sin 5^{\circ}}{\cos 5^{\circ}+\cos 10^{\circ} + \cos 20^{\circ}+\cos 25^{\circ}}\\[br]\ & = \frac{\sin 25^{\circ}+\sin 5^{\circ}+\sin 20^{\circ}+\sin 10^{\circ} }{\cos 25^{\circ}+\cos 5^{\circ}+\cos 20^{\circ}+\cos 10^{\circ}}\\[br]\ & = \frac{ 2\sin \frac{25^{\circ}+5^{\circ}}{2} \cos \frac{25^{\circ}-5^{\circ}}{2} +2\sin \frac{20^{\circ}+10^{\circ}}{2} \cos \frac{20^{\circ}-10^{\circ}}{2} } { 2\cos \frac{25^{\circ}+5^{\circ}}{2} \cos \frac{25^{\circ}-5^{\circ}}{2} +2\cos \frac{20^{\circ}+10^{\circ}}{2} \cos \frac{20^{\circ}-10^{\circ}}{2} }\\[br]\ & = \frac{2\sin \frac{30^{\circ}}{2} \cos \frac{20^{\circ}}{2}+2\sin \frac{30^{\circ}}{2} \cos \frac{10^{\circ}}{2} }{2\cos \frac{30^{\circ}}{2} \cos \frac{20^{\circ}}{2}+2\cos \frac{30^{\circ}}{2} \cos \frac{10^{\circ}}{2}}\\[br]\ & = \frac{2\sin 15 ^{\circ} \cos 10^{\circ} + 2\sin 15^{\circ} \cos 5^{\circ}}{2\cos 15 ^{\circ} \cos 10^{\circ} + 2\cos 15^{\circ} \cos 5^{\circ} }\\[br]\ & = \frac{2\sin 15^{\circ} ( \cos 10^{\circ}+\cos 5^{\circ})}{2\cos15^{\circ}( \cos 10^{\circ} + \cos 5^{\circ})}\\[br]\ & = \frac{\sin 15^{\circ}}{\cos 15^{\circ}}\\[br]\ & = \tan 15^{\circ}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]10. (g) Prove that: [math]\frac{1-\cos10^{\circ} + \cos 40^{\circ}-\cos 50^{\circ}}{1+\cos 10^{\circ}-\cos 40^{\circ}-\cos 50^{\circ}}=\cot 20^{\circ} \tan 5^{\circ} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \frac{1-\cos10^{\circ} + \cos 40^{\circ}-\cos 50^{\circ}}{1+\cos 10^{\circ}-\cos 40^{\circ}-\cos 50^{\circ}}\\[br]\ & = \frac{ 1 - (1-2\sin^2 5^{\circ}) + (\cos 40^{\circ}-\cos 50^{\circ})}{ 1+ (2\cos^2 5^{\circ} -1) - (\cos 40^{\circ} + \cos 50^{\circ})}\\[br]\ & = \frac{1-1+2\sin^2 5^{\circ}+2\sin \frac{40^{\circ}+50^{\circ}}{2} \sin \frac{ 50^{\circ}-40^{\circ}}{2}}{ 1+2\cos^2 5^{\circ}-1-2\cos \frac{40^{\circ}+50^{\circ}}{2} \cos \frac{40^{\circ}-50^{\circ}}{2}}\\[br]\ & = \frac{2\sin^2 5^{\circ}+2\sin 45^{\circ} \sin 5^{\circ}}{2\cos^2 5^{\circ}-2\cos 45^{\circ}\cos 5^{\circ}}\\[br]\ & = \frac{ 2\sin 5^{\circ} (\sin 5^{\circ} + \sin 45^{\circ})}{2\cos 5^{\circ}(\cos 5^{\circ}-\cos 45^{\circ})}\\[br]\ & = \frac{\sin 5^{\circ}}{\cos 5^{\circ}} \times \frac{\sin 5^{\circ}+\sin 45^{\circ}}{\cos 5^{\circ} - \cos 45^{\circ}}\\[br]\ & = \tan 5^{\circ} \times \frac{2\sin \frac{5^{\circ}+45^{\circ}}{2} \cos \frac{5^{\circ}-45^{\circ}}{2}}{2\sin \frac{5^{\circ}+45^{\circ}}{2} \sin \frac{45^{\circ}-5^{\circ}}{2}}\\[br]\ & = \tan 5^{\circ} \frac{\cos 20^{\circ}}{\sin 20^{\circ}}\\[br]\ & = \tan 5^{\circ} \cot 20^{\circ}\\[br]\ & = \cot 20^{\circ} \tan 5^{\circ}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]11. (a) Prove that: [math] \frac{\sin 2A \sin A + \sin 6A \sin 3A}{ \cos 2A \sin A + \cos 6A \sin 3A}=\tan 5A [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \frac{\sin 2A \sin A + \sin 6A \sin 3A}{ \cos 2A \sin A + \cos 6A \sin 3A}\\[br]\ & = \frac{2\sin 2A \sin A + 2\sin 6A \sin 3A}{ 2\cos 2A \sin A + 2\cos 6A \sin 3A}\\[br]\ & = \frac{\cos (2A-A)-\cos (2A+A) + \cos (6A-3A)-\cos (6A+3A)}{\sin (2A+A) -\sin (2A-A) + \sin (6A+3A) - \sin (6A-3A) }\\[br]\ & = \frac{\cos A -\cos 3A + \cos 3A - \cos 9A}{\sin 3A - \sin A +\sin 9A-\sin 3A}\\[br]\ & = \frac{\cos A - \cos 9A}{\sin 9A - \sin A}\\[br]\ & = \frac{2\sin \frac{A+9A}{2} \sin \frac{9A-A}{2}}{2\cos \frac{9A+A}{2}\sin \frac{9A-A}{2}}\\[br]\ & = \frac{\sin 5A}{\cos 5A}\\[br]\ & = \tan 5A\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]11. (b) Prove that: [math] -\tan \theta = \frac{\cos 5\theta .\sin 2\theta - \cos 4\theta . \sin 3\theta}{\sin 5\theta \sin 2\theta + \cos 4\theta \cos 3\theta }[/math][br]Solution:[br][math] \begin{align}[br]\text{RHS} \ & = \frac{\cos 5\theta .\sin 2\theta - \cos 4\theta . \sin 3\theta}{\sin 5\theta \sin 2\theta + \cos 4\theta \cos 3\theta }\\[br]\ & = \frac{2\cos 5\theta .\sin 2\theta - 2\cos 4\theta . \sin 3\theta}{2\sin 5\theta \sin 2\theta + 2\cos 4\theta \cos 3\theta }\\[br]\ & = \frac{\sin (5\theta +2\theta) - \sin (5\theta - 2\theta) - \{ \sin (4\theta +3\theta) - \sin ( 4\theta -3\theta) \} }{\cos (5\theta - 2\theta) - \cos (5\theta +2\theta) + \cos (4\theta+3\theta) + \cos (4\theta -3\theta) }\\[br]\ & = \frac{\sin 7\theta - \sin 3\theta - ( \sin 7\theta -\sin \theta )}{\cos 3\theta - \cos 7 \theta + \cos 7\theta + \cos \theta)}\\[br]\ & = \frac{\sin 7\theta - \sin 3\theta - \sin 7\theta + \sin \theta }{\cos 3\theta - \cos 7 \theta + \cos 7\theta - \cos \theta}\\[br]\ & = \frac{ - \sin 3\theta +\sin \theta }{ \cos 3\theta + \cos \theta }\\[br]\ & = \frac{ \sin \theta - \sin 3\theta}{ \cos 3\theta + \cos \theta }\\[br]\ & = \frac{ 2\cos \frac{3\theta +\theta}{2} \sin \frac{\theta -3\theta}{2}}{2\cos \frac{\theta +3\theta}{2} \cos \frac{3\theta -\theta}{2}}\\[br]\ & = \frac{ \sin (-\theta)}{cos \theta }\\[br]\ & = -\frac{\sin \theta}{cos \theta} \\[br]\ & = -\tan \theta \\[br]\ & = \text{LHS}\\[br]\end{align} [/math][br][br]11. (c) Prove that: [math] \frac{ \sin 18^{\circ} \cos 24^{\circ}-\cos 12^{\circ} \sin 6^{\circ} }{ \sin 24^{\circ}\sin 6^{\circ} + \cos 36^{\circ} \cos 6^{\circ} } = \tan 12^{\circ} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \frac{ \sin 18^{\circ} \cos 24^{\circ}-\cos 12^{\circ} \sin 6^{\circ} }{ \sin 24^{\circ}\sin 6^{\circ} + \cos 36^{\circ} \cos 6^{\circ} } \\[br] \ & = \frac{ 2\sin 18^{\circ} \cos 24^{\circ}-2\cos 12^{\circ} \sin 6^{\circ} }{ 2\sin 24^{\circ}\sin 6^{\circ} + 2\cos 36^{\circ} \cos 6^{\circ} } \\[br]\ & = \frac{\sin( 18^{\circ}+24^{\circ}) +\sin (18^{\circ}-24^{\circ}) - \left\{ \sin (12^{\circ} +6^{\circ}) - \sin ( 12^{\circ}-6^{\circ}) \right\}}{\cos ( 24^{\circ}-6^{\circ}) - \cos ( 24^{\circ}+6^{\circ}) + \cos (36^{\circ}+6^{\circ}) + \cos (36^{\circ}-6^{\circ})}\\[br]\ & = \frac{\sin 42^{\circ}+\sin (-6^{\circ}) - \sin 18^{\circ} + \sin 6^{\circ}}{\cos 18^{\circ} - \cos 30^{\circ}+\cos 42^{\circ} +\cos 30^{\circ}}\\[br]\ & = \frac{\sin 42^{\circ}-\sin 6^{\circ} - \sin 18^{\circ} + \sin 6^{\circ}}{\cos 18^{\circ} +\cos 42^{\circ} }\\[br]\ & = \frac{\sin 42^{\circ} - \sin 18^{\circ} }{\cos 18^{\circ} +\cos 42^{\circ} }\\[br]\ & = \frac{2\cos \frac{42^{\circ}+18^{\circ}}{2} \sin \frac{42^{\circ}-18^{\circ}}{2} }{2\cos \frac{18^{\circ}+42^{\circ}}{2} \cos \frac{18^{\circ}-42^{\circ}}{2} }\\[br]\ & = \frac{2\cos \frac{60^{\circ}}{2} \sin \frac{24^{\circ}}{2} }{2\cos \frac{60^{\circ}}{2} \cos \frac{-24}{2} }\\[br]\ & = \frac{2\cos 30^{\circ} \sin 12^{\circ}}{2\cos 30^{\circ} \cos 12^{\circ}}\\[br]\ & = \frac{\sin 12^{\circ}}{\cos 12^{\circ}}\\[br]\ & = \tan 12^{\circ}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]11. (d) Prove that: [math] \frac{ \sin 5^{\circ} \cos 10^{\circ}+\sin 15^{\circ} \cos 30^{\circ} }{ \sin 5^{\circ}\sin 10^{\circ} + \sin 15^{\circ} \sin 30^{\circ} } = \cot 25^{\circ} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \frac{ \sin 5^{\circ} \cos 10^{\circ}+\sin 15^{\circ} \cos 30^{\circ} }{ \sin 5^{\circ}\sin 10^{\circ} + \sin 15^{\circ} \sin 30^{\circ} } \\[br]\ & = \frac{2\cos 10^{\circ} \sin 5^{\circ} + 2\cos 30^{\circ}\sin 15^{\circ}}{2\sin 10^{\circ} \sin 5^{\circ} + 2\sin 30^{\circ}\sin 15^{\circ}}\\[br]\ & = \frac{\sin(10^{\circ}+5^{\circ}) - \sin (10^{\circ}-5^{\circ}) + \{ \sin (30^{\circ}+15^{\circ}) - \sin (30^{\circ}-15^{\circ}) \}}{\cos(10^{\circ}-5^{\circ}) - \cos (10^{\circ}+5^{\circ}) + \{ \cos (30^{\circ}-15^{\circ}) - \cos (30^{\circ}+15^{\circ}) \}}\\[br]\ & = \frac{\sin 15^{\circ} -\sin 5^{\circ} + \sin 45^{\circ} - \sin 15^{\circ} }{\cos 5^{\circ} -\cos 15^{\circ} + \cos 15^{\circ} - \cos 45^{\circ}}\\[br]\ & = \frac{ \sin 45^{\circ} -\sin 5^{\circ}}{\cos 5^{\circ} -\cos 45^{\circ}}\\[br]\ & = \frac{2\cos \frac{45^{\circ} + 5^{\circ}}{2} \sin \frac{45^{\circ}-5^{\circ}}{2}}{2\sin \frac{5^{\circ}+45^{\circ}}{2} \sin \frac{45^{\circ}-5^{\circ}}{2}}\\[br]\ & =\frac{\cos\frac{50^{\circ}}{2} }{\sin \frac{50^{\circ}}{2} }\\[br]\ & =\frac{\cos 25^{\circ}}{\sin 25^{\circ}}\\[br]\ & =\cot 25^{\circ}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]12. (a) Prove that: [math]\cos \theta . \cos (60^{\circ}-\theta)\cos(60^{\circ}+\theta) = \frac{1}{4} \cos 3\theta [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \cos \theta . \cos (60^{\circ}-\theta)\cos(60^{\circ}+\theta) \\[br]\ & = \frac{1}{2} \cos \theta [ 2\cos (60^{\circ}+\theta)\cos(60^{\circ}-\theta) ]\\[br]\ & = \frac{1}{2} \cos \theta [\cos ( 60^{\circ} + \theta + 60^{\circ} -\theta)+ \cos (60^{\circ}+\theta -60^{\circ}+\theta) ]\\[br]\ & = \frac{1}{2}\cos \theta [\cos 120^{\circ} +\cos 2\theta ]\\[br]\ & = \frac{1}{2}\cos \theta [\frac{- 1}{2} + \cos 2\theta ]\\[br]\ & = \frac{-1}{4} \cos \theta + \frac{1}{2} \cos 2\theta \cos \theta \\[br]\ & = \frac{-1}{4} \cos\theta +\frac{1}{4}[2\cos 2\theta \cos \theta ]\\[br]\ & = \frac{-1}{4} \cos \theta + \frac{1}{4} [ \cos (2\theta +\theta) + \cos (2\theta -\theta) ]\\[br]\ & = \frac{-1}{4} \cos \theta + \frac{1}{4} [ \cos (2\theta+\theta) + \cos (2\theta -\theta) ]\\[br]\ & = \frac{-1}{4}\cos \theta + \frac{1}{4} [\cos 3\theta + \cos \theta ]\\[br]\ & = \frac{-1}{4} \cos \theta + \frac{1}{4} \cos 3\theta +\frac{1}{4} \cos \theta\\[br]\ & = \frac{1}{4} \cos 3\theta \\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]12. (b) Prove that: [math]\sec \left( \frac{\pi^c}{4} + \frac{\alpha}{2} \right) \times \sec \left( \frac{\pi^c}{4} - \frac{\alpha}{2} \right) = 2\sec \alpha [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \sec \left( \frac{\pi^c}{4} + \frac{\alpha}{2} \right) \times \sec \left( \frac{\pi^c}{4} - \frac{\alpha}{2} \right) \\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]12. (c) Prove that: [math] \text{cosec}(45^{\circ}+\theta)\text{cosec}( 45^{\circ}-\theta) = 2\sec 2\theta [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \text{cosec}(45^{\circ}+\theta)\text{cosec}( 45^{\circ}-\theta) \\[br]\ & = \frac{1}{\sin(45^{\circ}+\theta) \sin (45^{\circ}-\theta)}\\[br]\ & = \frac{2}{2\sin(45^{\circ}+\theta) \sin (45^{\circ}-\theta)}\\[br]\ & = \frac{2}{\cos \{(45^{\circ}+\theta) - (45^{\circ}-\theta) \} - \cos \{(45^{\circ}+\theta) + (45^{\circ}-\theta) \} }\\[br]\ & = \frac{2}{\cos (45^{\circ} + \theta - 45^{\circ}+ \theta) - \cos ( 45^{\circ}+\theta + 45^{\circ}-\theta) }\\[br]\ & = \frac{2}{\cos 2\theta - \cos 90^{\circ} }\\[br]\ & = \frac{2}{\cos 2\theta - 0 }\\[br]\ & = \frac{2}{\cos 2\theta}\\[br]\ & = 2\sec 2\theta \\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]12. (d) Prove that: [math] \cos^2 \alpha + \cos^2(\alpha +120^{\circ}) + \cos^2 (\alpha - 120^{\circ}) = \frac{3}{2} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \cos^2 \alpha + \cos^2(\alpha +120^{\circ}) + \cos^2 (\alpha - 120^{\circ}) \\[br]\ & = \frac{1+\cos 2\alpha }{2} + \frac{1+\cos2(\alpha +120^{\circ})}{2}+ \frac{1+\cos 2(\alpha - 120^{\circ})}{2}\\[br]\ & = \frac{1+\cos 2\alpha }{2} + \frac{1+\cos(2\alpha +240^{\circ})}{2}+ \frac{1+\cos (2\alpha - 240^{\circ})}{2}\\[br]\ & = \frac{1+\cos2\alpha + 1+\cos (2\alpha + 240^{\circ})+ 1+\cos (2\alpha - 240^{\circ}) }{2}\\[br]\ & = \frac{3+ \cos 2\alpha + [\cos (2\alpha + 240^{\circ})+\cos (2\alpha - 240^{\circ})] }{2}\\[br]\ & = \frac{3+ \cos 2\alpha + 2\cos 2\alpha \cos 240^{\circ}}{2}\\[br]\ & = \frac{3+\cos 2\alpha +2\cos 2\alpha \times \left(\frac{-1}{2}\right)}{2}\\[br]\ & = \frac{3+\cos 2\alpha - \cos 2\alpha}{2}\\[br]\ & = \frac{3}{2}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]13. (a) Prove that: [math] \sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ} =\frac{1}{8} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ} \\[br]\ & = \frac{1}{2}\sin 10^{\circ} [ 2\sin 70^{\circ} \sin 50^{\circ} ]\\[br]\ & = \frac{1}{2} \sin 10^{\circ} [ \cos (70^{\circ}-50^{\circ}) - \cos ( 70^{\circ} + 50^{\circ}] \\[br]\ & = \frac{1}{2} \sin 10^{\circ} [ \cos 20^{\circ}-\cos 120^{\circ}]\\[br]\ & = \frac{1}{2} \sin 10^{\circ} \left[ \cos 20^{\circ} + \frac{1}{2} \right] \\[br]\ & = \frac{1}{2} \cos 20^{\circ}\sin 10^{\circ} + \frac{1}{4} \sin 10^{\circ} \\[br]\ & = \frac{1}{4}[2 \cos 20^{\circ}\sin 10^{\circ}] + \frac{1}{4} \sin 10^{\circ} \\[br]\ & = \frac{1}{4}[\sin (20^{\circ}+10^{\circ}) - \sin (20^{\circ}-10^{\circ})] + \frac{1}{4} \sin 10^{\circ} \\[br]\ & = \frac{1}{4}[\sin 30^{\circ}- \sin 10^{\circ}] + \frac{1}{4} \sin 10^{\circ} \\[br]\ & = \frac{1}{4}\left[\frac{1}{2}- \sin 10^{\circ}\right] + \frac{1}{4} \sin 10^{\circ} \\[br]\ & = \frac{1}{8} - \frac{1}{4} \sin 10^{\circ} + \frac{1}{4} \sin 10^{\circ}\\[br]\ & = \frac{1}{8}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]13. (b) Prove that: [math] 8\cos 20^{\circ}\cos40^{\circ}\cos80^{\circ}=1 [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = 8\cos 20^{\circ}\cos40^{\circ}\cos80^{\circ} \\[br]\ & = 4 \cos 20^{\circ} [2\cos 80^{\circ} \cos 40^{\circ} ]\\[br]\ & = 4\cos 20^{\circ} [ \cos (80^{\circ} +40^{\circ}) + \cos (80^{\circ}-40^{\circ}) ]\\[br]\ & = 4\cos 20^{\circ}[ \cos 120^{\circ} + \cos 40^{\circ} ]\\[br]\ & = 4\cos 20^{\circ} \left[ \frac{-1}{2} + \cos 40^{\circ} \right]\\[br]\ & = -2\cos 20^{\circ} + 4\cos 40^{\circ} \cos 20^{\circ}\\[br]\ & = -2\cos 20^{\circ}+ 2[2\cos 40^{\circ}\cos 20^{\circ} ]\\[br]\ & = -2\cos 20^{\circ} +2[\cos(40^{\circ}+20^{\circ}) +\cos (40^{\circ}-20^{\circ})]\\[br]\ & = -2\cos 20^{\circ}+2[\cos 60^{\circ}+\cos 20^{\circ}]\\[br]\ & = -2\cos 20^{\circ} + 2\cos 60^{\circ}+2\cos 20^{\circ}\\[br]\ & = 2\cos 60^{\circ}\\[br]\ & = 2\times \frac{1}{2}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]13. (c) Prove that: [math] \cos40^{\circ}\cos80^{\circ}\cos 160^{\circ}= -\frac{1}{8} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \cos40^{\circ}\cos80^{\circ}\cos 160^{\circ} \\[br]\ & = \frac{1}{2} \cos 40^{\circ} [ 2\cos 160^{\circ}\cos 80^{\circ}]\\[br]\ & = \frac{1}{2} \cos 40^{\circ}[ \cos (160^{\circ}+80^{\circ}) - \cos (160^{\circ}-80^{\circ}) ]\\[br]\ & = \frac{1}{2} \cos 40^{\circ} [\cos 240^{\circ}-\cos 80^{\circ} ]\\[br]\ & = \frac{1}{2} \cos 40^{\circ} \left[ \frac{-1}{2} -\cos 80^{\circ} \right]\\[br]\ & = \frac{-1}{4} \cos 40^{\circ} - \frac{1}{2} \cos 80^{\circ}\cos 40^{\circ}\\[br]\ & = \frac{-1}{4} \cos 40^{\circ} -\frac{1}{4} [2\cos 80^{\circ} \cos 40^{\circ} ]\\[br]\ & = \frac{-1}{4} \cos 40^{\circ} -\frac{1}{4} [\cos (80^{\circ}+40^{\circ}) -\cos (80^{\circ}-40^{\circ}) ]\\[br]\ & = \frac{-1}{4} \cos 40^{\circ} -\frac{1}{4} [\cos 120^{\circ} -\cos 40^{\circ} ]\\[br]\ & = \frac{-1}{4} \cos 40^{\circ} -\frac{1}{4} \cos 120^{\circ} + \frac{1}{4}\cos 40^{\circ}\\[br]\ & = -\frac{1}{4} \cos 120^{\circ} \\[br]\ & = -\frac{1}{4} \times \frac{1}{2} \\[br]\ & = -\frac{1}{8}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]13. (d) Prove that: [math] \sin 20^{\circ} \sin 30^{\circ}\sin 40^{\circ}\sin 80^{\circ}= \frac{\sqrt{3}}{16} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \sin 20^{\circ} \sin 30^{\circ}\sin 40^{\circ}\sin 80^{\circ} \\[br]\ & = \sin 20^{\circ} \times \frac{1}{2} \times \sin 40^{\circ}\sin 80^{\circ} \\[br]\ & = \frac{1}{2}\sin 20^{\circ} \sin 40^{\circ}\sin 80^{\circ} \\[br]\ & = \frac{1}{4}\sin 20^{\circ}[2 \sin 80^{\circ}\sin 40^{\circ}] \\[br]\ & = \frac{1}{4}\sin 20^{\circ}[\cos ( 80^{\circ}-40^{\circ}) - \cos ( 80^{\circ}+40^{\circ})] \\[br]\ & = \frac{1}{4}\sin 20^{\circ}[\cos 40^{\circ}) - \cos 120^{\circ}] \\[br]\ & = \frac{1}{4}\sin 20^{\circ}\left[\cos 40^{\circ} - \left(\frac{-1}{2}\right)\right] \\[br]\ & = \frac{1}{4} \cos 40^{\circ} \sin 20^{\circ} + \frac{1}{8} \sin 20^{\circ}\\[br]\ & = \frac{1}{8}[2 \cos 40^{\circ} \sin 20^{\circ}] + \frac{1}{8} \sin 20^{\circ}\\[br]\ & = \frac{1}{8}[\sin (40^{\circ}+20^{\circ}) - \sin (40^{\circ}-20^{\circ}) ] + \frac{1}{8} \sin 20^{\circ}\\[br]\ & = \frac{1}{8}[\sin 60^{\circ}- \sin 20^{\circ} ] + \frac{1}{8} \sin 20^{\circ}\\[br]\ & = \frac{1}{8}\left[\frac{\sqrt{3}}{2}- \sin 20^{\circ} \right] + \frac{1}{8} \sin 20^{\circ}\\[br]\ & = \frac{\sqrt{3}}{16}- \frac{1}{8} \sin 20^{\circ} + \frac{1}{8} \sin 20^{\circ}\\[br]\ & = \frac{\sqrt{3}}{16}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]13. (e) Prove that: [math] \sin 10^{\circ} \sin 50^{\circ}\sin 60^{\circ}\sin 70^{\circ}= \frac{\sqrt{3}}{16} [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \sin 10^{\circ} \sin 50^{\circ}\sin 60^{\circ}\sin 70^{\circ} \\[br] \ & = \sin 10^{\circ} \sin 50^{\circ}\times \frac{\sqrt{3}}{2} \times \sin 70^{\circ} \\[br] \ & = \frac{\sqrt{3}}{2}\sin 10^{\circ} \sin 50^{\circ}\sin 70^{\circ} \\[br] \ & = \frac{\sqrt{3}}{4}\sin 10^{\circ} [2 \sin 70^{\circ}\sin 50^{\circ} ] \\[br]\ & =\frac{\sqrt{3}}{4} \sin 10^{\circ} [ \cos (70^{\circ}-50^{\circ}) - \cos ( 70^{\circ} + 50^{\circ}] \\[br]\ & = \frac{\sqrt{3}}{4} \sin 10^{\circ} [ \cos 20^{\circ}-\cos 120^{\circ}]\\[br]\ & = \frac{\sqrt{3}}{4} \sin 10^{\circ} \left[ \cos 20^{\circ} + \frac{1}{2} \right] \\[br]\ & = \frac{\sqrt{3}}{4} \cos 20^{\circ}\sin 10^{\circ} +\frac{\sqrt{3}}{8} \sin 10^{\circ} \\[br]\ & = \frac{\sqrt{3}}{8}[2 \cos 20^{\circ}\sin 10^{\circ}] + \frac{\sqrt{3}}{8}\sin 10^{\circ} \\[br]\ & =\frac{\sqrt{3}}{8}[\sin (20^{\circ}+10^{\circ}) - \sin (20^{\circ}-10^{\circ})] + \frac{\sqrt{3}}{8} \sin 10^{\circ} \\[br]\ & =\frac{\sqrt{3}}{8}[\sin 30^{\circ}- \sin 10^{\circ}] +\frac{\sqrt{3}}{8}\sin 10^{\circ} \\[br]\ & = \frac{\sqrt{3}}{8}\left[\frac{1}{2}- \sin 10^{\circ}\right] +\frac{\sqrt{3}}{8} \sin 10^{\circ} \\[br]\ & = \frac{\sqrt{3}}{16} - \frac{\sqrt{3}}{8}\sin 10^{\circ} +\frac{\sqrt{3}}{8} \sin 10^{\circ}\\[br]\ & = \frac{\sqrt{3}}{16}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]13. (f) Prove that: [math] \cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} =\frac{1}{16} [/math] [br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} \\[br]\ & = \cos 20^{\circ} \cos 40^{\circ}\times \frac{1}{2} \times \cos 80^{\circ} \\[br]\ & = \frac{1}{2} \cos 20^{\circ} \cos 40^{\circ} cos 80^{\circ} \\[br]\ & = \frac{1}{4} \cos 20^{\circ} [2\cos 80^{\circ} cos 40^{\circ}] \\[br]\ & = \frac{1}{4} \cos 20^{\circ} [\cos (80^{\circ} + 40^{\circ}) + \cos (80^{\circ}-40^{\circ}) ] \\[br]\ & = \frac{1}{4} \cos 20^{\circ} [\cos 120^{\circ} + \cos 40^{\circ} ] \\[br]\ & = \frac{1}{4} \cos 20^{\circ} \left[\frac{-1}{2} + \cos 40^{\circ} \right] \\[br]\ & = \frac{-1}{8} \cos 20^{\circ} + \frac{1}{4}\cos 40^{\circ} \cos 20^{\circ} \\[br]\ & = \frac{-1}{8} \cos 20^{\circ} + \frac{1}{8}[2\cos 40^{\circ} \cos 20^{\circ} ] \\[br]\ & = \frac{-1}{8} \cos 20^{\circ} + \frac{1}{8}[\cos (40^{\circ}+20^{\circ}) + \cos (40^{\circ}-20^{\circ}) ] \\[br]\ & = \frac{-1}{8} \cos 20^{\circ} + \frac{1}{8}[\cos 60^{\circ} + \cos 20^{\circ} ] \\[br]\ & = \frac{-1}{8} \cos 20^{\circ} + \frac{1}{8}\cos 60^{\circ} + \frac{1}{8}\cos 20^{\circ} \\[br]\ & = \frac{1}{8}\cos 60^{\circ}\\[br]\ & = \frac{1}{8} \times \frac{1}{2}\\[br]\ & = \frac{1}{16}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br][br]13. (g) Prove that: [math] \cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ} =\frac{3}{16} [/math] [br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ} \\[br]\ & = \cos 10^{\circ}\times \frac{\sqrt{3}}{2}\times \cos 40^{\circ} \cos 80^{\circ} \\[br]\ & =\frac{\sqrt{3}}{2} \cos 10^{\circ} \cos 70^{\circ} cos 50^{\circ} \\[br]\ & = \frac{\sqrt{3}}{4} \cos 10^{\circ} [2\cos 70^{\circ} cos 50^{\circ}] \\[br]\ & = \frac{\sqrt{3}}{4} \cos 10^{\circ} [\cos (70^{\circ} + 50^{\circ}) + \cos (70^{\circ}-50^{\circ}) ] \\[br]\ & = \frac{\sqrt{3}}{4} \cos 10^{\circ} [\cos 120^{\circ} + \cos 20^{\circ} ] \\[br]\ & = \frac{\sqrt{3}}{4} \cos 10^{\circ} \left[\frac{-1}{2} + \cos 20^{\circ} \right] \\[br]\ & = \frac{-\sqrt{3}}{8} \cos 10^{\circ} + \frac{\sqrt{3}}{4}\cos 20^{\circ} \cos 10^{\circ} \\[br]\ & = \frac{-\sqrt{3}}{8} \cos 10^{\circ} + \frac{\sqrt{3}}{8}[2\cos 20^{\circ} \cos 10^{\circ} ] \\[br]\ & = \frac{-\sqrt{3}}{8} \cos 10^{\circ} + \frac{\sqrt{3}}{8}[\cos (20^{\circ}+10^{\circ}) + \cos (20^{\circ}-10^{\circ}) ] \\[br]\ & = \frac{-\sqrt{3}}{8} \cos 10^{\circ} + \frac{\sqrt{3}}{8}[\cos 30^{\circ} + \cos 10^{\circ} ] \\[br]\ & = \frac{-\sqrt{3}}{8} \cos 10^{\circ} + \frac{\sqrt{3}}{8}\cos 30^{\circ} + \frac{\sqrt{3}}{8}\cos 10^{\circ} \\[br]\ & = \frac{\sqrt{3}}{8}\cos 30^{\circ}\\[br]\ & = \frac{\sqrt{3}}{8} \times \frac{\sqrt{3}}{2}\\[br]\ & = \frac{3}{16}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]13. (h) Prove that: [math] \cos 12^{\circ} \cos 24^{\circ} \cos 48^{\circ} \cos 84^{\circ} =\frac{1}{16} [/math] [br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \cos 12^{\circ} \cos 24^{\circ} \cos 48^{\circ} \cos 84^{\circ} \\[br]\ & = \frac{(2\sin 12^{\circ} \cos 12^{\circ}) \cos 24^{\circ} \cos 48^{\circ} \cos 84^{\circ}}{2\sin 12^{\circ}} \\[br]\ & = \frac{\sin 24^{\circ} \cos 24^{\circ} \cos 48^{\circ} \cos 84^{\circ}}{2\sin 12^{\circ}} \times \frac{2}{2} \\[br]\ & = \frac{(2\sin 24^{\circ} \cos 24^{\circ}) \cos 48^{\circ} \cos 84^{\circ}}{4\sin 12^{\circ}} \\[br]\ & = \frac{\sin 48^{\circ} \cos 48^{\circ} \cos 84^{\circ}}{4\sin 12^{\circ}}\times \frac{2}{2} \\[br]\ & = \frac{(2\sin 48^{\circ} \cos 48^{\circ} ) \cos 84^{\circ}}{8\sin 12^{\circ}} \\[br]\ & = \frac{\sin 96^{\circ} \cos 84^{\circ}}{8\sin 12^{\circ}} \times \frac{2}{2} \\[br]\ & = \frac{2\sin (90^{\circ}+6^{\circ}) \cos (90^{\circ}-6^{\circ})}{16 \sin 12^{\circ}}\\[br]\ & = \frac{2\cos 6^{\circ} \sin 6^{\circ}}{16 \sin 12^{\circ}}\\[br]\ & = \frac{2\sin 6^{\circ} \cos 6^{\circ}}{16 \sin 12^{\circ}}\\[br]\ & = \frac{\sin 12^{\circ}}{16 \sin 12^{\circ}}\\[br]\ & = \frac{1}{16}\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]14. (a) Prove that: [math] \frac{\sin^2\theta-\sin^2 \alpha}{\sin \theta \cos \theta - \sin \alpha \cos \alpha } =\tan (\theta +\alpha) [/math] [br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \frac{\sin^2\theta-\sin^2 \alpha}{\sin \theta \cos \theta - \sin \alpha \cos \alpha } \\[br]\ & = \frac{\sin^2\theta-\sin^2 \alpha}{\sin \theta \cos \theta - \sin \alpha \cos \alpha } \times \frac{2}{2}\\[br]\ & = \frac{2\sin^2\theta-2\sin^2 \alpha}{2\sin \theta \cos \theta -2 \sin \alpha \cos \alpha } \\[br]\ & = \frac{1-\cos 2\theta - (1-\cos 2\alpha) }{\sin 2\theta - \sin 2\alpha}\\[br]\ & = \frac{1-\cos 2\theta - 1+\cos 2\alpha }{\sin 2\theta - \sin 2\alpha}\\[br]\ & = \frac{\cos 2\alpha-\cos 2\theta }{\sin 2\theta - \sin 2\alpha}\\[br]\ & = \frac{2\sin \frac{2\theta + 2\alpha }{2} \sin \frac{2\theta - 2\alpha}{2}}{2\cos \frac{2\theta +2\alpha}{2} \sin \frac{2\theta -2\alpha }{2}}\\[br]\ & = \frac{\sin ( \theta + \alpha)}{\cos (\theta +\alpha) }\\[br]\ & = \tan (\theta +\alpha)\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]14. (b) Prove that: [math] \frac{\cos^2 A-\cos^2 B}{\sin A \cos A - \sin B \cos B } =-\tan (A+B) [/math] [br]Solution:[br][math] \begin{align} [br]\text{LHS} \ & = \frac{\cos^2 A-\cos^2 B}{\sin A \cos A - \sin B \cos B } \\[br]\ & = \frac{\cos^2 A-\cos^2 B}{\sin A \cos A - \sin B \cos B } \times \frac{2}{2} \\[br]\ & = \frac{2\cos^2 A-2\cos^2 B}{2\sin A \cos A - 2\sin B \cos B } \\[br]\ & = \frac{1+\cos 2A -(1+\cos 2B)}{\sin 2A -\sin 2B}\\[br]\ & = \frac{1+\cos 2A -1-\cos 2B}{\sin 2A -\sin 2B}\\[br]\ & = \frac{\cos 2A -\cos 2B}{\sin 2A -\sin 2B}\\[br]\ & = \frac{2\sin \frac{2A+2B}{2} \sin \frac{2B-2A}{2}}{2\cos \frac{2A+2B}{2} \sin \frac{2A-2B}{2}}\\[br]\ & = \frac{\sin (A+B) \sin (B-A) }{\cos (A+B) \sin (A-B)}\\[br]\ & =-\frac{\sin (A+B) \sin (A-B) }{\cos(A+B) \sin (A-B) }\\[br]\ & =-\frac{\sin (A+B) }{\cos(A+B)}\\[br]\ & = -\tan ( A+B) \\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]14. (c) Prove that: [math]\frac{\sin 130^{\circ} - \sin 140^{\circ}}{\cos 220^{\circ}+\cos 310^{\circ}} = -1 [/math][br]Solution:[br][math] \begin{align} [br]\text{LHS} \ & = \frac{\sin 130^{\circ} - \sin 140^{\circ}}{\cos 220^{\circ}+\cos 310^{\circ}} \\[br] \ & = \frac{\sin (180^{\circ}-50^{\circ}) - \sin (180^{\circ}-40^{\circ})}{\cos (180^{\circ}+40^{\circ})+\cos(360^{\circ} -50^{\circ})} \\[br]\ & = \frac{\sin 50^{\circ}-\sin 40^{\circ}}{-\cos40^{\circ} + \cos 50^{\circ}}\\[br]\ & = \frac{\sin 50^{\circ}-\sin 40^{\circ}}{ \cos 50^{\circ}-\cos40^{\circ} }\\[br]\ & = \frac{2\cos \frac{50^{\circ}+40^{\circ}}{2} \sin \frac{50^{\circ}-40^{\circ}}{2}}{2\sin \frac{50^{\circ}+40^{\circ}}{2} \sin \frac{40^{\circ}-50^{\circ}}{2}}\\[br]\ & = \frac{\cos 45^{\circ}\sin 5^{\circ}}{\sin 45^{\circ} \sin (-5^{\circ})}\\[br]\ & = -\frac{\frac{1}{\sqrt{2}} \sin 5^{\circ}}{\frac{1}{\sqrt{2}} \sin 5^{\circ}}\\[br]\ & = -1\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]14. (d) Prove that: [math] \frac{\sin^2 \alpha - \sin^2 \beta}{ \sin \alpha \cos \alpha + \sin \beta \cos \beta }= \tan (\alpha -\beta) [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \frac{\sin^2\alpha-\sin^2 \beta}{\sin \alpha \cos \alpha + \sin \beta \cos \beta } \\[br]\ & = \frac{\sin^2\alpha-\sin^2 \beta}{\sin \alpha \cos \alpha + \sin \beta \cos \beta } \times \frac{2}{2}\\[br]\ & = \frac{2\sin^2\alpha-2\sin^2 \beta}{2\sin \alpha \cos \alpha + 2\sin \beta \cos \beta } \\[br]\ & = \frac{1-\cos 2\alpha - (1-\cos 2\beta)}{\sin 2\alpha + \sin 2\beta}\\[br]\ & = \frac{1-\cos 2\alpha -1+\cos 2\beta)}{\sin 2\alpha + \sin 2\beta}\\[br]\ & = \frac{ \cos 2\beta-\cos 2\alpha}{\sin 2\alpha + \sin 2\beta}\\[br]\ & = \frac{2\sin \frac{2\alpha +2\beta}{2} \sin \frac{2\alpha -2\beta}{2} }{2\sin \frac{2\alpha + 2\beta}{2} \cos \frac{2\alpha -2\beta}{2}}\\[br]\ & = \frac{\sin (\alpha -\beta)}{\cos (\alpha -\beta) }\\[br]\ & = \tan (\alpha -\beta)\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]15. (a) Prove that: [math] \cos^3 x \sin^2 x =\frac{1}{16} ( 2\cos x-\cos3x - \cos 5x) [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \cos^3 x \sin^2 x \\[br]\ & = \cos^3 x \sin^2 x \\[br]\ & = \frac{3\cos x + \cos 3x}{4}\times \frac{1-\cos 2x}{2}\\[br]\ & = \frac{3\cos x - 3\cos 2x \cos x + \cos 3x - \cos 3x \cos 2x}{8}\times \frac{2}{2}\\[br]\ & = \frac{6\cos x - 3(2\cos 2x \cos x) + 2\cos 3x -2\cos 3x \cos 2x}{16}\\[br]\ & = \frac{6\cos x -3[\cos (2x+x) + \cos (2x-x)] +2\cos 3x -[\cos (3x+2x) +\cos(3x-2)]}{16}\\[br]\ & = \frac{6\cos x - 3\cos 3x - 3\cos x + 2\cos 3x - \cos 5x -\cos x }{16}\\[br]\ & = \frac{6\cos x - 3\cos x -\cos x - 3\cos 3x + 2\cos 3x - \cos 5x }{16}\\[br]\ & = \frac{1}{16}(2\cos x - \cos 3x -\cos 5x)\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]15. (b) Prove that: [math] \cos^4 \theta \sin^2 \theta = \frac{1}{32} ( 2+\cos 2\theta -\cos 6\theta -2\cos 4\theta) [/math][br][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \cos^4 \theta \sin^2 \theta \\[br]\ & = \cos^2 \theta \cos^2 \theta \sin^2 \theta\\[br]\ & = \cos^2 \theta\times \frac{1}{4} (2\sin \theta \cos \theta )^2\\[br]\ & = \frac{1}{4} \times \frac{1+\cos 2\theta}{2}\times (\sin 2\theta)^2\\[br]\ & = \frac{1+\cos 2\theta}{8} \times \sin^2 2\theta \\[br]\ & = \frac{1+\cos 2\theta}{8} \times \frac{1-\cos 4\theta}{2}\\[br]\ & = \frac{ 1-\cos 4\theta + \cos 2\theta - \cos 4\theta \cos 2\theta }{16}\\[br]\ & = \frac{ 1-\cos 4\theta + \cos 2\theta - \cos 4\theta \cos 2\theta }{16}\times \frac{2}{2} \\[br]\ & = \frac{ 2-2\cos 4\theta + 2\cos 2\theta - 2\cos 4\theta \cos 2\theta }{32}\\[br]\ & = \frac{ 2-2\cos 4\theta + 2\cos 2\theta - [\cos(4\theta +2\theta) + \cos (4\theta -2\theta)] }{32}\\[br]\ & = \frac{ 2-2\cos 4\theta + 2\cos 2\theta - \cos 6\theta - \cos 2\theta }{32}\\[br]\ & = \frac{1}{32} ( 2+ \cos 2\theta - \cos 6\theta -2\cos 4\theta )\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br][br]Alternative,[br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = \cos^4 \theta \sin^2 \theta \\[br]\ & = \left( \cos^2 \theta \right)^2 \sin^2 \theta \\[br]\ & = \left(\frac{1+ \cos2 \theta }{2} \right)^2 \times \frac{1-\cos 2\theta}{2}\\[br]\ & = \frac{ 1 + 2\cos 2\theta + \cos^2 2\theta}{4} \times \frac{1-\cos 2\theta}{2}\\[br]\ & = \frac{ 1 + 2\cos 2\theta + \cos^2 2\theta}{4}\times \frac{2}{2} \times \frac{1-\cos 2\theta}{2}\\[br]\ & = \frac{ 2 + 4\cos 2\theta + 2\cos^2 2\theta}{8} \times \frac{1-\cos 2\theta}{2}\\[br]\ & = \frac{ 2 + 4\cos 2\theta +(1+ \cos4\theta)}{8} \times \frac{1-\cos 2\theta}{2}\\[br]\ & = \frac{ 3 + 4\cos 2\theta + \cos4\theta}{8} \times \frac{1-\cos 2\theta}{2}\\[br]\ & = \frac{3 -3\cos 2\theta +4\cos 2\theta -4\cos^2 2\theta + \cos4\theta -\cos 4\theta \cos 2\theta}{16}\\[br]\ & = \frac{ 3+ \cos 2\theta -4\cos^2 2\theta +\cos 4\theta -\cos 4\theta \cos 2\theta}{16}\times \frac{2}{2}\\[br]\ & = \frac{ 6+ 2\cos 2\theta -4(2\cos^2 2\theta) +2\cos 4\theta -2\cos 4\theta \cos 2\theta}{32}\\[br]\ & = \frac{ 6 + 2\cos 2\theta -4( 1+\cos 4\theta ) + 2\cos 4\theta - [\cos (4\theta +2\theta) + \cos (4\theta -2\theta)]}{32}\\[br]\ & = \frac{ 6 + 2\cos 2\theta -4- 4\cos 4\theta + 2\cos 4\theta - [\cos 6\theta + \cos 2\theta ]}{32}\\[br]\ & = \frac{ 2 + 2\cos 2\theta - 2\cos 4\theta - \cos 6\theta - \cos 2\theta }{32}\\[br]\ & = \frac{ 2 + \cos 2\theta - \cos 6\theta - 2\cos 4\theta }{32}\\[br]\ & = \frac{1}{32}( 2 + \cos 2\theta - \cos 6\theta - 2\cos 4\theta )\\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br][br]15. (c) Prove that: [math] 16\cos^3 y =16\cos^5 y +2\cos y - \cos 3y -\cos 5y [/math][br]Solution:[br][math] \begin{align}[br]\text{RHS} \ & = 16\cos^5 y +2\cos y - \cos 3y -\cos 5y \\[br] \ & = 16\cos^5 y +2\cos y - (\cos 5y +\cos 3y ) \\[br] \ & = 16\cos^5 y +2\cos y - 2\cos \frac{5y + 3y}{2}\cos \frac{5y - 3y}{2} \\[br]\ & = 16\cos^5 y +2\cos y - 2\cos \frac{8y}{2}\cos \frac{2y}{2} \\[br]\ & = 16\cos^5 y +2\cos y - 2\cos 4y \cos y \\[br]\ & = 2\cos y [ 8\cos^4 y +1 -\cos 4y ]\\[br]\ & = 2\cos y [ 8 \cos^4 y +2\sin^2 2y]\\[br]\ & = 2\cos y [ 8 \cos^4 y + 2( \sin 2y )^2]\\[br]\ & = 2\cos y [ 8\cos^4 y +2 (2\sin y \cos y )^2 ]\\[br]\ & = 2\cos y [ 8\cos^4y +2\times 4\sin^2 y \cos^2 y]\\[br]\ & = 2\cos y [ 8\cos^4y +8\sin^2 y \cos^2 y ]\\[br]\ & = 2\cos y \times 8 \cos^2 y [\cos^2 y + \sin^2 y ]\\[br]\ & = 16 \cos^3 y [1]\\[br]\ & = 16 \cos^3 \\[br]\ & = \text{LHS}\\[br]\end{align} [/math][br][br]15. (d) Prove that: [math] 2\cos \frac{\pi^c}{13}\cos \frac{9\pi^c}{13}+\cos \frac{3\pi^c}{13}+\cos \frac{5\pi^c}{13}=0 [/math][br]Solution:[br][math] \begin{align}[br]\text{LHS} \ & = 2\cos \frac{\pi^c}{13}\cos \frac{9\pi^c}{13}+\cos \frac{3\pi^c}{13}+\cos \frac{5\pi^c}{13} \\[br] \ & =\cos \left(\frac{\pi^c}{13} + \frac{9\pi^c}{13} \right)+\cos \left(\frac{\pi^c}{13} - \frac{9\pi^c}{13} \right)+\cos \frac{3\pi^c}{13}+\cos \frac{5\pi^c}{13} \\[br]\ & =\cos \left(\frac{10\pi^c}{13} \right)+\cos \left(\frac{-8\pi^c}{13} \right)+\cos \frac{3\pi^c}{13}+\cos \frac{5\pi^c}{13} \\[br]\ & =\cos \frac{10\pi^c}{13} +\cos \frac{8\pi^c}{13} +\cos \frac{3\pi^c}{13}+\cos \frac{5\pi^c}{13} \\[br]\ & =\cos \frac{13\pi^c-3\pi^c}{13} +\cos \frac{13\pi^c-5\pi^c}{13} +\cos \frac{3\pi^c}{13}+\cos \frac{5\pi^c}{13} \\[br]\ & = \cos \left (\pi^c - \frac{3\pi^c}{13} \right)+ \cos \left (\pi^c - \frac{5\pi^c}{13} \right) +\cos \frac{3\pi^c}{13}+\cos \frac{5\pi^c}{13} \\[br]\ & = -\cos \frac{3\pi^c}{13} - \cos \frac{5\pi^c}{13} +\cos \frac{3\pi^c}{13}+\cos \frac{5\pi^c}{13} \\[br]\ & = 0 \\[br]\ & = \text{RHS}\\[br]\end{align} [/math][br][br]16. (a) [math] \text{If } \sin (\alpha + \beta) = k\sin (\alpha -\beta), \text{ Prove that:} (k-1) \tan \alpha = (k+1) \tan \beta [/math][br]Solution:[br][br]Given,[br][math] \begin{align}[br]\ & \sin (\alpha + \beta) = k\sin (\alpha -\beta) \\[br]\ & \text{ or, }\frac{\sin (\alpha + \beta)}{\sin (\alpha -\beta) }= k\\[br]\ & \therefore k = \frac{\sin (\alpha + \beta)}{\sin (\alpha -\beta) }\\[br]\end{align} [/math][br]Now,[br][math] \begin{align}[br]\frac{k-1}{k+1} \ & = \frac{ \frac{\sin (\alpha + \beta)}{\sin (\alpha -\beta) }-1}{ \frac{\sin (\alpha + \beta)}{\sin (\alpha -\beta) }+1}\\[br]\ & = \frac{ \frac{\sin (\alpha + \beta)-\sin (\alpha -\beta)}{\sin (\alpha -\beta) }}{ \frac{\sin (\alpha + \beta)+\sin (\alpha -\beta)}{\sin (\alpha -\beta) }}\\[br]\ & = \frac{\sin (\alpha + \beta) - \sin (\alpha -\beta)}{\sin (\alpha +\beta) + \sin (\alpha -\beta)}\\[br]\ & = \frac{2\cos \alpha \sin \beta}{2\sin \alpha \cos \beta}\\[br]\ & = \frac{\cos \alpha }{\sin \alpha} \times \frac{\sin \beta}{\cos \beta}\\[br]\ & = \cot \alpha \tan \beta\\[br]\ & = \frac{1}{\tan \alpha} \times \tan \beta\\[br]\ & = \frac{\tan \beta }{\tan \alpha}\\[br]\text{ or, } \frac{k-1}{k+1} \ & = \frac{\tan \beta }{\tan \alpha}\\[br]\therefore (k-1) \tan \alpha \ & = (k+1) \tan \beta \text{ Proved}.\\[br]\end{align} [/math][br][br]16. (b)[math]\text{ If } \cos \theta = \cos \alpha . \cos \beta, \text{Prove that } \tan \frac{ \theta + \alpha} {2} . \tan \frac{\theta - \alpha}{2} = \tan^2 \frac{\beta}{2} [/math] [br]Solution:[br][math] \begin{align}[br] \text{Given,}\ & \\[br] \cos \theta \ & = \cos \alpha . \cos \beta\\[br]\text{or, } \frac{ \cos \theta }{\cos \alpha } \ & = \cos \beta \\[br]\text{or, } \frac{ \cos \theta }{\cos \alpha } \ & = \frac{\cos \beta}{1} \\[br]\text{or, } \frac{ \cos \alpha - \cos \theta }{ \cos \alpha + \cos \theta} \ & = \frac{ 1-\cos \beta}{1+\cos \beta} \\[br]\text{or, }\frac{2\sin \frac{\alpha + \theta}{2} \sin \frac{\theta - \alpha}{2}} {2\cos \frac{\alpha + \theta}{2} \cos \frac{\alpha - \theta}{2} } \ & = \frac{1-(1-2\sin^2 \frac{\beta}{2}) }{1+ (2cos^2\frac{\beta}{2} -1)}\\[br]\text{or, }\frac{\sin \frac{\alpha + \theta}{2}} {\cos \frac{\alpha + \theta}{2} } \times \frac{\sin \frac{\theta -\alpha}{2}}{\cos \frac{\theta - \alpha}{2}} \ & = \frac{2\sin^2 \frac{\beta}{2} }{2cos^2\frac{\beta}{2} }\\[br] \text{ or, } \tan \frac{\alpha + \theta}{2}. \tan \frac{\theta - \alpha}{2} \ & = \frac{\sin^2 \frac{\beta}{2}}{\cos^2\frac{\beta}{2}}\\[br]\therefore \tan \frac{\alpha + \theta}{2}. \tan \frac{\theta - \alpha}{2} \ & = \tan^2 \frac{\beta}{2}\\[br]\end{align} [/math][br][br]