Constructing Parallel Lines Solution

Construct a line parallel to AB through point C. Prove that one pair of corresponding angles are congruent.
Constructing Parallel Lines Steps[br]1. Create Line AB using the [icon]/images/ggb/toolbar/mode_join.png[/icon] tool.[br]2. Create Point C using the [icon]/images/ggb/toolbar/mode_point.png[/icon] tool.[br]3. Create Line AC or BC using the [icon]https://www.geogebra.org/images/ggb/toolbar/mode_join.png[/icon] tool.[br]4. Create a Compass with the Vertex of Angle A using the [icon]/images/ggb/toolbar/mode_compasses.png[/icon] tool, then use the same size compass at Vertex C.[br]5. Create Point D where the compass intersects Line AB using the [icon]/images/ggb/toolbar/mode_point.png[/icon] tool.[br]6. Create Point E where the compass intersects Line AC using the [icon]https://www.geogebra.org/images/ggb/toolbar/mode_point.png[/icon] tool.[br]7. Create a compass with a vertex of CD using the [icon]/images/ggb/toolbar/mode_compasses.png[/icon]tool and place the center at Point E.[br]8. Create Point F at the Intersection of the Compasses using the [icon]/images/ggb/toolbar/mode_point.png[/icon] tool.[br]9. Prove the angles are congruent by using the [icon]/images/ggb/toolbar/mode_angle.png[/icon] tool.[br][br][br][br][br][br]

Información: Constructing Parallel Lines Solution