Finde möglichst viele Punkte, die sowohl die Gleichung [math]\text{x + 2y – 3z = – 3}[/math] als auch die Gleichung [math]\text{2x – 2y = 0}[/math] erfüllen.
(0 | 0 | 1) oder (1 | 1 | 2) oder (2 | 2 | 3)
Gib einen Ausdruck an, mit dem alle Punkte beschrieben werden, die die beiden Gleichungen erfüllen, und deute die Punktmenge geometrisch. Löse dafür das lineare Gleichungssystem, das durch die beiden Gleichungen gegeben ist.
Alle Punkte der Form (t | t | t+1) erfüllen die beiden Gleichungen.[br]Die Menge aller Punkte dieser Form beschreiben eine Gerade.