IM Geo.6.13 Practice: Intersection Points

Graph the equations (x-2)²+(y+3)²=36 and x=2.
Where do they intersect?
[size=150]Select [b]all[/b] equations for which the point [math]\left(2,-3\right)[/math] is on the graph of the equation.[/size]
[size=150]The image shows a graph of the parabola with focus [math]\left(3,4\right)[/math] and directrix [math]y=2[/math], and the line given by [math]y=4[/math].[/size][br][br][img][/img][br][br]Find and verify the points where the parabola and the line intersect.
Here is a line l.
Write equations for and graph 4 different lines perpendicular to [math]\ell[/math].
[size=150]Write an equation whose graph is a line perpendicular to the graph of [math]y=4[/math] and which passes through the point [math]\left(2,5\right)[/math].[/size]
[size=150]Select [b]all[/b] lines that are perpendicular to [math]y-4=-\frac{2}{3}\left(x+1\right)[/math].[/size]
[size=150]Select the line parallel to [math]3x-2y=10[/math].[/size]
[size=150]Explain how you could tell whether [math]x^2+bx+c[/math] is a perfect square trinomial.[/size]
Close

Information: IM Geo.6.13 Practice: Intersection Points