[list][*][b][u][i]Step 1 [/i][/u][/b]Draw a segment with an endpoint at vertex A so that the segment is perpendicular to line and is bisected by line . Label the other endpoint of the segment A'.[br][/*][/list][list][*][b][i][u]Step 2[/u][/i][/b][b] [/b]Repeat Step 1 at vertices B and C.[b][br][/b][/*][/list][list][*][b][i][u]Step 3 [/u][/i][/b]Connect points A′, B′, and C′.△A′B′C′ is the image of △ABC.[b][br][/b][/*][/list][br][br][br][br]
[list][*][b][i][u]Step 1[/u][/i][/b] Draw a segment with an endpoint at vertex A so that the segment is perpendicular to line ℓ and is bisected by line ℓ. Label the other endpoint of the segment A′.[br][/*][/list][br][list][*][b][i][u]Step 2[/u][/i][/b] Repeat Step 1 at vertex B. [br][/*][/list][b] Notice that C and C' are the same point because C is on the line of reflection.[/b][list][*][b][i][u]Step 3 [/u][/i][/b]Connect points A', B', and C'. △A'B'C' is the image of △ABC.[/*][/list]
How can you check that you drew the image of the triangle correctly?
Possible Answer: Since a reflection is a rigid motion, it preserves length. Check that each side of △ABC has the same length as its image in △A'B'C'.
In Part A, how can you tell that line segment AA' is perpendicular to line ℓ?
Possible answer: Line ℓ forms a diagonal through corners of grid squares. A_A' forms a[br]diagonal through corners of grid squares in the opposite direction.
Reflect the figure with the given vertices across the given line.[br][list][*]Step 1 Find the coordinates of the vertices of the image.[br][/*][*]M(1, 2), N(1, 4), P(3, 3); y-axis[br][/*][/list][center]A(x, y) [math]\longrightarrow[/math] A'(-x, y).[br]M(1, 2) [math]\longrightarrow[/math] M'(-1, 2)[br]N(1, 4) [math]\longrightarrow[/math] N'(-1, 4)[br]P(3, 3) [math]\longrightarrow[/math] P'(-3, 3)[/center][list][*]Step 2 Graph the preimage.[br][/*][*]Step 3 Predict the quadrant in which the image will lie. Since MNP lies in Quadrant I and the triangle is reflected across the y-axis, the image will lie in Quadrant II.[/*][*]Graph the image.[br][/*][/list]
Step 1 Find the coordinates of the vertices of the image.[br][center] A (x, y)[math]\longrightarrow[/math] A' ( ___ , ___ )[br] D (2, 0)[math]\longrightarrow[/math] D' ( ___ , ___ )[br] E (2, 2)[math]\longrightarrow[/math] E' ( ___ , ___ )[br]F (5, 2)[math]\longrightarrow[/math] F'( ___ , ___ )[br] G (5, 1)[math]\longrightarrow[/math] G' ( ___ , ___ )[/center]Step 2 Graph the preimage.[br]Step 3 Since DEFG lies in Quadrant I and the quadrilateral is reflected across the line y = x,[br]the image will lie in Quadrant _______.[br]Graph the image.
Reflect the figure with the given vertices across the given line.[br]S(3, 4), T(3, 1), U(−2, 1), V(−2, 4); x-axis
Reflect the figure with the given vertices across the given line.[br]A(-4, -2), B(-1, -1), C(-1, -4); y = -x