b-spline.js - understanding knot_vector

[br][table][tr][br][td]m+1 points, [br][list][*]p[sub]0[/sub],…,p[sub]m[/sub] [/*][/list]in the app[br][list][*]m=5 [/*][/list]and polynom[br][list][*]degree n [/*][/list]and the Knot Vector[list][*] U=(u[sub]0[/sub],…,u[sub]n+m+1[/sub])[br][/*][/list][br][/td][br][td][math]\large s(t)=\sum \limits_{i=0}^{m} \mathbf{p}_{i} N_{i}^{n}(t)[/math][br][br][math]\large N_{i}^{0}(t)= \text { if } \left\{\begin{array}{ll}1 & u_{i} \leq t \lt u_{i+1} \\ 0 & \text{ else }\end{array}\right. [/math][br][br][math]\large N_{i}^{k}(t)=\frac{t-u_{i}}{u_{i+k}-u_{i}} N_{i}^{k-1}(t)+\frac{u_{i+1+k}-t}{u_{i+1+k}-u_{i+1}} N_{i+1}^{k-1}(t) \quad 1 \leq k \leq n[/math][br][br][br][br][br][/td][br][/tr][br][/table]b[sub]0[/sub] [color=#0000ff]b[sub]1[/sub] b[sub]2[/sub] b[sub]3[/sub] b[sub]4[/sub] [/color]b[sub]n[/sub] [br]Spline of polynomial-base b[sub](1,2,3,4)[/sub] generated by CURVE2 (degree 2), CURVE3 (degree 3) scripts [br]- corresponding to a standard knot vector[br]- Execution not automated. [br]- B[sub](0,n)[/sub] repeated knots (2 times) at start and end - see Parametric Curves.[br][br]pre defined steps=100, [i]set steps=nn - in command line for an other resolution ...[/i][br]spline plot density (step points with polyline)[br]slider a[sub]0[/sub] [math]\equiv[/math] knot[sub]0...2[/sub], a[sub]1[/sub][math]\equiv[/math] knot[sub]+1[/sub] , a[sub]2[/sub] [math]\equiv[/math] knot[sub]+2[/sub] , a[sub]3[/sub][math]\equiv[/math] knot[sub]+3[/sub] , a[sub]4[/sub][math]\equiv[/math] knot[sub]n+m-1...n+m+1[/sub][br][list][*]for degree 2, 3 - on/off [[math]\large \pitchfork[/math]][br][/*][/list]Extend P with additional points/knots.[br][br]I don't think my js.code is very elegant or fast - i stay very close to the mathematical notation as i understand it to keep the code readable and I hope comprehensible. [br][br]apart from the knot vector length check red/green, no input checks are carried out.[br][br]

Information: b-spline.js - understanding knot_vector