Den här sidan/aktiviteten är också del av en eller flera andra böcker. Ändringar kommer att visas i alla dessa böcker. Vill du fortfarande ändra på den här originalsidan eller vill du skapa en egen kopia för den här boken i stället?
Den här sidan skapades av '{$1}'. Vill du redigera originalet eller vill du skapa din egen kopia istället?
Den här sidan skapades av '{$1}' och du har inte rättigheter att redigera det. Vill du skapa din egen kopia av det och lägga det i boken?
In addition, students working at HL
should be able to
– use the Conjugate Root Theorem to
find the roots of polynomials
– work with complex numbers in
rectangular and polar form to solve
quadratic and other equations including
those in the form zn = a, where n ∈ Z
and z = r (Cos θ + iSin θ )
– use De Moivre’s Theorem
– prove De Moivre’s Theorem by
induction for n ∈ N
– use applications such as nth roots of
unity, n ∈ N, and identities such as
Cos 3θ = 4 Cos3 θ – 3 Cos θ
– appreciate that processes can generate
sequences of numbers or objects
– investigate patterns among these
sequences
– use patterns to continue the sequence
– generalise and explain patterns and
relationships in algebraic form
– recognise whether a sequence is
arithmetic, geometric or neither
– find the sum to n terms of an arithmetic
series
In addition, students working at HL
should be able to
– use the Conjugate Root Theorem to
find the roots of polynomials
– work with complex numbers in
rectangular and polar form to solve
quadratic and other equations including
those in the form zn = a, where n ∈ Z
and z = r (Cos θ + iSin θ )
– use De Moivre’s Theorem
– prove De Moivre’s Theorem by
induction for n ∈ N
– use applications such as nth roots of
unity, n ∈ N, and identities such as
Cos 3θ = 4 Cos3 θ – 3 Cos θ