Dette arbejdsark er en del af en eller flere andre GeoGebraBøger. Ændringer i arbejdsarket vil slå igennem i alle disse bøger. Ønsker du stadig at ændre det originale materiale, eller lave din egen kopi til denne GeoGebraBog i stedet?
Dette materiale er lavet af '{$1}'. Ønsker du at redigere det originale materiale eller at lave din egen kopi i stedet?
Dette arbejdsark er lavet af '{$1}' og du har ikke rettigheder til at redigere det. Ønsker du i stedet at lave din egen kopi af arbejdsarket og tilføje den til GeoGebraBogen?
In addition, students working at HL
should be able to
– use the Conjugate Root Theorem to
find the roots of polynomials
– work with complex numbers in
rectangular and polar form to solve
quadratic and other equations including
those in the form zn = a, where n ∈ Z
and z = r (Cos θ + iSin θ )
– use De Moivre’s Theorem
– prove De Moivre’s Theorem by
induction for n ∈ N
– use applications such as nth roots of
unity, n ∈ N, and identities such as
Cos 3θ = 4 Cos3 θ – 3 Cos θ
– appreciate that processes can generate
sequences of numbers or objects
– investigate patterns among these
sequences
– use patterns to continue the sequence
– generalise and explain patterns and
relationships in algebraic form
– recognise whether a sequence is
arithmetic, geometric or neither
– find the sum to n terms of an arithmetic
series
Dette kapitel indeholder endnu ikke noget materiale
In addition, students working at HL
should be able to
– use the Conjugate Root Theorem to
find the roots of polynomials
– work with complex numbers in
rectangular and polar form to solve
quadratic and other equations including
those in the form zn = a, where n ∈ Z
and z = r (Cos θ + iSin θ )
– use De Moivre’s Theorem
– prove De Moivre’s Theorem by
induction for n ∈ N
– use applications such as nth roots of
unity, n ∈ N, and identities such as
Cos 3θ = 4 Cos3 θ – 3 Cos θ
Dette kapitel indeholder endnu ikke noget materiale