A cylinder has traditionally been three dimensional solid, one of the most basic of curve linear. Cylinder has two circular bases and a curved lateral face.
To observe the net of cylinder.
Click and observe the slider of net of cylinder.
Given GGB applet is Net of ......................
Firstly we opem GGB applet .[br]Then we also choose 3D Graphics[br]Take a slider t (0,1,0.01) on 2D Graphic.[br]Again we choose input bar then choose following condition and click enter turn by turn.[br]1. A=Point(yAxis)[br]2. B=Point(yAxis)[br]3. c=Circle(A, B, xOyPlane)[br]4.θ =(1 - t) π[br]5.r=π / θ[br]6.ϕ= t π / 2[br]7.Take Cylinder(c,3) then enter and rename [br]8.C=Intersect(zAxis, e) [hints: join intersect point on cylinder top point and zAxis][br]9.a=Line(C, xAxis)[br]10.D= (0, 1, 3)[br]11.g=PerpendicularLine(D, xOyPlane)[br]12.K=Circle(g, C)[br]13.e'=Rotate(Rotate(e, ϕ, a), ϕ, xAxis)[br]14.d=Rotate(Rotate(e, ϕ, a), ϕ, xAxis)[br]15.h=Circle(A, B, xOyPlane)[br]16.E=If(t < 1, (r sin(-θ), r (1 - cos(-θ)) cos(ϕ) - 3sin(ϕ), 3cos(ϕ) + r (1 - cos(-θ)) sin(ϕ)), (-π, -3sin(ϕ), 3cos(ϕ)))[br]17.F=If(t < 1, (r sin(θ), r (1 - cos(θ)) cos(ϕ) - 3sin(ϕ), 3cos(ϕ) + r (1 - cos(θ)) sin(ϕ)), (π, -3sin(ϕ), 3cos(ϕ)))[br]18.G=If(t < 1, (r sin(-θ), r (1 - cos(-θ)) cos(ϕ), r (1 - cos(-θ)) sin(ϕ)), (-π, 0, 0))[br]19.H=If(t < 1, (r sin(θ), r (1 - cos(θ)) cos(ϕ), r (1 - cos(θ)) sin(ϕ)), (π, 0, 0))[br]20. m=Segment(E, G)[br]21.n=Segment(F, H) [br]22.p=Line((0, 1, 0), zAxis)[br]23.q=Circle(p, B)[br]24.i=If(t < 1, Surface(r sin(u θ), r (1 - cos(u θ)) cos(ϕ) - v sin(ϕ), v cos(ϕ) + r (1 - cos(u θ)) sin(ϕ), u, -1, 1, v, 0, 3), Surface(π u, -v sin(ϕ), v cos(ϕ), u, -1, 1, v, 0, 3))[br]25.j=If(t < 1, Curve(r sin(u θ), r (1 - cos(u θ)) cos(ϕ), r (1 - cos(u θ)) sin(ϕ), u, -1, 1), Curve(π u, 0, 0, u, -1, 1))[br]26.k=If(t < 1, Curve(r sin(u θ), r (1 - cos(u θ)) cos(ϕ) - 3sin(ϕ), 3cos(ϕ) + r (1 - cos(u θ)) sin(ϕ), u, -1, 1), Curve(π u, -3sin(ϕ), 3cos(ϕ), u, -1, 1))[br]27.then we choose different colour [br]28. Hide other object and Show the figure net of cylinder.