Lembre-se do que significa desenhar um ângulo na [b][color=#0000ff]posição padrão[/color][/b].[br]O applet abaixo ilustra dinamicamente o que significa que quaisquer 2 ângulos (desenhados na posição padrão) sejam classificados como [b]ÂNGULOS COTERMINAIS.[br][/b][br]Abaixo, você verá a formação de um [b][color=#0000ff]ângulo positivo[/color][/b] e um [color=#ff0000][b]ângulo negativo[/b][/color] que são coterminais entre si.[br] [br]Interaja com este applet por alguns minutos.[br]Em seguida, responda às perguntas a seguir.
Without looking up the definition on another tab in your internet browser, describe, in words, what it means for any two angles (drawn in standard position) to be classified as [b]COTERMINAL ANGLES.[/b]
[b]Hint: [/b][br][br]The definition has [i]nothing[/i] to do with the terms/phrases "360 degrees" or "2pi radians" or "multiple". Just look at them for what they are. Again, to recall what it means for an angle to be drawn in standard position, [url=https://www.geogebra.org/m/kUmRhNnN][color=#0000ff][b]click here[/b][/color][/url].
a) Is it possible for two [b][color=#0000ff]positive angles[/color][/b] drawn in standard position to be coterminal? [br]b) If so, can you provide the measures of any two [color=#0000ff][b]positive angles[/b][/color] that are cotermainal?
a) YES [br]b) There's infinitely many possibilities!
a) Is it possible for two [b][color=#ff0000]negative angles[/color][/b] drawn in standard position to be coterminal? [br]b) If so, can you provide the measures of any two [b][color=#ff0000]negative angles[/color][/b] that are cotermainal?
a) YES [br]b) There's infinitely many possibilities!