IM Alg2.2.5 Lesson: Connecting Factors and Zeros

What do you notice? What do you wonder?
[table][tr][td][math]f(x)=(x+5)(x+1)(x-3)[/math][br][img][/img][br][/td][td][math]g(x)=(x+5)(x+1)(x-2)[/math][br][img][/img][br][/td][/tr][tr][td][math]h(x)=(x+4)(x+1)(x-2)[/math][br][img][/img][br][br][/td][td][/td][/tr][/table][br]
Find all values of x that make the equation true.
[math]\left(x+4\right)\left(x+2\right)\left(x-1\right)=0[/math]
[math]\left(x+4\right)\left(x+2\right)\left(x-1\right)\left(x-3\right)=0[/math]
[math]\left(x+4\right)^2\left(x+2\right)^2=0[/math]
[math]-2\left(x-4\right)\left(x-2\right)\left(x+1\right)\left(x+3\right)=0[/math]
[math]\left(2x+8\right)\left(7x-3\right)\left(x-10\right)=0[/math]
[math]x^2+3x-4=0[/math]
[math]x\left(3-x\right)\left(x-1\right)\left(x+0.75\right)=0[/math]
[math]\left(x^2-4\right)\left(x+9\right)=0[/math]
Write an equation that is true when [math]x[/math] is equal to -5, 4, or 0 and for no other values of [math]x[/math].[br]
Write an equation that is true when [math]x[/math] is equal to -5, 4, or 0 and for no other values of [math]x[/math], and where one side of the equation is a 4th degree polynomial.[br]
Match each equation to either a graph or a description below.
[size=150]Take turns with your partner to match an equation with a graph or a description of a graph.[/size][list][*]For each match that you find, explain to your partner how you know it’s a match.[/*][*]For each match that your partner finds, listen carefully to their explanation. If you disagree, discuss your thinking and work to reach an agreement.[/*][/list]

IM Alg2.2.5 Practice: Connecting Factors and Zeros

[left][size=150]What is the value of [math]4\left(x-2\right)\left(x-3\right)+7\left(x-2\right)\left(x-5\right)-6\left(x-3\right)\left(x-5\right)[/math] when [math]x=5[/math]?[/size][/left]
[size=150]Which polynomial function has zeros when [math]x=-2,\frac{3}{4},5[/math]?[/size]
[size=150]The graph of a polynomial [math]f\left(x\right)=\left(2x-3\right)\left(x-4\right)\left(x+3\right)[/math] has [math]x[/math]-intercepts at 3 [math]x[/math] values.[/size][br]What are they?
Match each sequence with one of the recursive definitions.
[size=100][size=150]Note that only the part of the definition showing the relationship between the current term and the previous term is given so as not to give away the solutions. One of the sequences matches two recursive definitions.[/size][/size][br][br][math]a\left(n\right)=a\left(n-1\right)-4[/math]
[math]b\left(x\right)=b\left(n-1\right)+0[/math]
[math]c\left(n\right)=-\frac{1}{2}\cdot c\left(n-1\right)[/math]
[math]d\left(n\right)=1\cdot d\left(n-1\right)[/math]
[size=150]Han is multiplying [math]10x^4[/math] by [math]0.5x^3[/math] and gets [math]5x^7[/math]. He says that [math]0.5x^3[/math] is not a polynomial because 0.5 [/size][size=150]is not an integer. What is the error in Han’s thinking? Explain your reasoning.[/size]
Here are two expressions whose sum is a new expression, [math]A[/math].[br][math]\displaystyle (2x^2 + 5)+(6x^{\boxed{\phantom{33}}} -7) = A[/math][br][br]Select [b]all [/b]the values that we can put in the box so that [math]A[/math] is a polynomial.

Information