修改自:[url=https://www.geogebra.org/u/daniel+mentrard]Daniel Mentrard[/url] 的 Phyllotaxis,https://www.geogebra.org/m/mghtqde9
关键参数[br]f(x)=如果(x<0, 0, x)[br][br]上2[br]liste4=序列(C+(f(t-k); k*2*3.14159 long),k,0,t,a)[br][br]上3[br]l1=序列(A+(f(t-k); k*2*3.14159 long),k,0,t,3.2 a)[br][br]下1[br]liste2=序列(B+(f(t-k); k*2*3.14159 long),k,0,t,2 a)[br]liste3=序列(线段(元素(liste2,i),元素(liste2,i+1)),i,1,长度(liste2))[br][br]下2[br]l2=序列(F+(f(t-k); k*2*3.14159 long),k,0,t,7 a)[br][br]下三[br]liste5=序列(D+(f(t-k); k*2*3.14159 long),k,0,t,0.73 a)[br][br]上1[br]liste6=序列(E+(f(t-k); k*2*3.14159 long),k,0,t,1.678 a)[br][br]其他为常数[br][img][/img]