[table][br][br][tr][br][td]Transformation matrix[/td][br][td]変換行列[/td][br][td]변환 행렬[/td][br][td]变换矩阵[/td][br][/tr][br][tr][br][td]Rotate a point[/td][br][td]点を回転させる[/td][br][td]점 회전[/td][br][td]旋转一个点[/td][br][/tr][br][tr][br][td]Scaling objects[/td][br][td]オブジェクトのスケーリング[/td][br][td]객체 스케일링[/td][br][td]缩放对象[/td][br][/tr][br][tr][br][td]Reflection over the y-axis[/td][br][td]Y軸に関する反射[/td][br][td]y축에 대한 반사[/td][br][td]关于y轴的反射[/td][br][/tr][br][tr][br][td]Combining transformations[/td][br][td]変換の組み合わせ[/td][br][td]변환 결합[/td][br][td]组合变换[/td][br][/tr][br][tr][br][td]Transformation order effects[/td][br][td]変換の順序効果[/td][br][td]변환 순서 효과[/td][br][td]变换顺序效应[/td][br][/tr][br][tr][br][td]Intuitive understanding[/td][br][td]直感的理解[/td][br][td]직관적 이해[/td][br][td]直观理解[/td][br][/tr][br][tr][br][td]Determinant of 1[/td][br][td]行列式が1[/td][br][td]결정자 1[/td][br][td]行列式为1[/td][br][/tr][br][tr][br][td]Scaling factors[/td][br][td]スケーリングファクタ[/td][br][td]스케일링 요소[/td][br][td]缩放因子[/td][br][/tr][br][tr][br][td]Rotation transformation[/td][br][td]回転変換[/td][br][td]회전 변환[/td][br][td]旋转变换[/td][br][/tr][br][tr][br][td]Reflection and rotation combination[/td][br][td]反射と回転の組み合わせ[/td][br][td]반사 및 회전 결합[/td][br][td]反射与旋转组合[/td][br][/tr][br][tr][br][td]x-axis reflection[/td][br][td]X軸に関する反射[/td][br][td]x축 반사[/td][br][td]关于x轴的反射[/td][br][/tr][br][tr][br][td]Vertical stretching[/td][br][td]垂直方向の伸長[/td][br][td]수직 스트레칭[/td][br][td]垂直伸展[/td][br][/tr][br][/table][br]
[br][table][br][tr][br][td][b]Factual Questions[/b][br]1. What is a transformation matrix?[br][br]2. How do you use a transformation matrix to rotate a point around the origin?[br][br]3. What is the transformation matrix for scaling objects in 2D space?[br][br]4. Determine the transformation matrix for a reflection over the y-axis.[br][br]5. Explain how to combine multiple transformations into a single transformation matrix.[br][/td][br][br][td][b]Conceptual Questions[/b][br]1. Explain the significance of each element in a transformation matrix.[br][br]2. Discuss how transformation matrices are used in computer graphics and geometric modeling.[br][br]3. How do transformation matrices relate to the concept of linear transformations in linear algebra?[br][br]4. Explain the process of decomposing a complex transformation into simpler transformations.[br][br]5. Compare the effects of applying transformations in different orders using transformation matrices.[br][/td][br][br][td][b]Debatable Questions[/b][br]1. Is the mathematical concept of transformation matrices intuitive for students learning about them for the first time? Why or why not?[br][br]2. Debate the importance of understanding transformation matrices in the context of modern technology and digital media.[br][br]3. Can mastery of transformation matrices be considered essential for careers in engineering and computer science?[br][br]4. Discuss the statement: "The ability to manipulate and understand transformation matrices is crucial for advancements in virtual reality and augmented reality."[br][br]5. Evaluate the impact of learning transformation matrices on students' spatial reasoning and problem-solving skills.[br][/td][br][/tr][br][/table][br]
Mini-Investigation: Transformation Matrices Unleashed[br][br]Objective:[br]To explore the effects of different transformation matrices on geometric shapes and understand the underlying mathematical principles.[br][br]Questions:[br]1. What happens to the area of the triangle when you apply a transformation matrix with a determinant of 1? Why does this happen?[br]2. Experiment with various scaling factors. How does scaling impact the coordinates of the triangle's vertices and the area of the triangle?[br]3. Apply a rotation transformation to the triangle. What is the relationship between the angle of rotation and the positions of the triangle's vertices?[br]4. Combine a reflection and a rotation in one transformation. Describe the resulting position and orientation of the triangle.[br]5. Can you create a transformation matrix that reflects the triangle in the x-axis and then stretches it vertically by a factor of 2?[br]6. Challenge: Construct a transformation matrix that rotates the triangle by 45 degrees and then reflects it in the origin. What properties does this matrix have?[br][br]Activity:[br]Using the applet, design a transformation matrix sequence that would simulate an object bouncing off a wall. For extra creativity, see if the triangle can end up in a specific location after a series of transformations.[br]