[i][b][color=#0000ff] 2^n=1024,in this context n is any positive integer and 2 is base of n,where we have to find value of n by solving this.[/color][/b][/i]
[i][color=#0000ff]Student will be able to solve the algebraic equation using by geogebra cas window.[/color][/i]
[br][list=1][*][i][b][color=#ff0000]At first , open GeoGebra window,[/color][/b][/i][/*][*][i][b][color=#ff0000]Choose CAS from geogebra classic,[/color][/b][/i][/*][*][i][b][color=#ff0000]Enter in first row f(n):=2^n to define function f,[/color][/b][/i][/*][*][i][b][color=#ff0000]Enter in second row 1024=f(n),[/color][/b][/i][/*][*][i][b][color=#ff0000]find solution by using solve tool.[/color][/b][/i][/*][/list]
Choose the current answer for the equation 4^n=1048576.
[list=1][*][i][b][color=#0000ff]Open a new GeoGebra window, [/color][/b][/i][/*][*][i][b][color=#0000ff]Switch to Perspectives – CAS ,[/color][/b][/i][/*][*][i][b][color=#0000ff]Define the function f as f(n) := 2n. Hint: Use “:=” for definitions and “=” for equations,[/color][/b][/i][/*][*][i][b][color=#0000ff]Enter 1024 = f(n) 5. Now find solution by applying the Solve tool Hint: Use the Solve command Solve[1024= f(n)],[/color][/b][/i][/*][*][i][b][color=#0000ff]or Solve[1024 = f(n), n] .[/color][/b][/i][/*][/list]