[br][table][br][br][tr][br][td]Trapezium Rule[/td][br][td]台形則[/td][br][td]사다리꼴 규칙[/td][br][td]梯形规则[/td][br][/tr][br][tr][br][td]Area under a curve[/td][br][td]曲線の下の領域[/td][br][td]곡선 아래 영역[/td][br][td]曲线下的面积[/td][br][/tr][br][tr][br][td]Estimation accuracy[/td][br][td]推定の精度[/td][br][td]추정 정확도[/td][br][td]估计精度[/td][br][/tr][br][tr][br][td]Numerical integration[/td][br][td]数値積分[/td][br][td]수치 적분[/td][br][td]数值积分[/td][br][/tr][br][tr][br][td]Polynomial function[/td][br][td]多項式関数[/td][br][td]다항 함수[/td][br][td]多项式函数[/td][br][/tr][br][tr][br][td]Definite integration[/td][br][td]定積分[/td][br][td]정적분[/td][br][td]定积分[/td][br][/tr][br][tr][br][td]Percentage error[/td][br][td]百分率誤差[/td][br][td]백분율 오차[/td][br][td]百分比误差[/td][br][/tr][br][/table][br]
[table][br][tr][br][td][b]Factual Inquiry Questions[/b][/td][br][td][b]Conceptual Inquiry Questions[/b][/td][br][td][b]Debatable Inquiry Questions[/b][/td][br][/tr][br][tr][br][td]What is the Trapezium Rule, and how is it formulated for estimating the area under a curve?[/td][br][td]Why does the Trapezium Rule provide a good approximation for the area under a curve, and how does it compare to actual integration?[/td][br][td]Is the Trapezium Rule more practical for certain types of functions or curves than others? Provide examples or reasoning.[/td][br][/tr][br][tr][br][td]How does the accuracy of the Trapezium Rule estimation change with the number of trapeziums used?[/td][br][td]How can the error in the Trapezium Rule estimation be quantified or reduced?[/td][br][td]Can the Trapezium Rule and other numerical methods for integration replace symbolic integration in mathematical education and application? Why or why not?[/td][br][/tr][br][tr][br][td][/td][br][td][/td][br][td]How might advancements in computational power and algorithms affect the use and development of numerical methods like the Trapezium Rule in scientific research and industry?[/td][br][/tr][br][/table][br]
Scenario: The Land Surveyor's Challenge[br][br]Background:[br]In the kingdom of Geometrica, a new land has been discovered, and the king has summoned the best land surveyors to estimate the area of the fertile fields, which are crucial for the kingdom's expansion. The fields have uneven boundaries that follow a polynomial function, and the surveyors must use the Trapezium Rule to estimate the area.[br][br]Objective:[br]As a skilled surveyor, you are tasked with using the Trapezium Rule applet to approximate the area under the curve representing the new fields and determine the efficiency and accuracy of your approximation.[br][br]Investigation Steps:[br][br]1. Setting Up the Applet:[br] - Input the function that represents the boundaries of the fields.[br] - Set the limits of integration to match the length of the fields.[br][br]2. Approximating the Area:[br] - Use the applet to approximate the area under the curve with a specified number of trapeziums.[br] - Record the estimated area provided by the applet.[br][br]3. Calculating True Area and Error:[br] - Calculate the actual area under the curve using definite integration.[br] - Determine the percentage error between your trapezium approximation and the actual area.[br][br]4. Reporting to the King:[br] - Prepare a report for the king explaining your methodology and the accuracy of your land area estimate.[br][br]Questions for Investigation:[br][br]1. Discovery Question:[br] - How does increasing the number of trapeziums affect the accuracy of your area approximation?[br][br]2. Understanding the Trapezium Rule:[br] - Why is the Trapezium Rule a useful method for approximating areas under curves?[br][br]3. Real-world Application:[br] - Where else in real-world scenarios might the Trapezium Rule be applied?[br][br]4. Reflection:[br] - Reflect on the importance of accurate area calculation in land surveying and urban planning.[br]