Write a recursive definition for this sequence using function notation.[br]
Use your definition to make a table of values for [math]a(n)[/math] and find [math]a(6)[/math].
Write a recursive definition for this sequence using function notation.[br]
Explain how to use the recursive definition to determine [math]g(30)[/math]. (Don’t actually determine the value.)[br]
[math]a(1)=1,a(n)=3\cdot a(n-1),n\ge2[/math]
[math]b(1)=1,b(n)=\text{-}2+b(n-1),n\ge2[/math]
[math]c(1)=1,c(n)=2\cdot c(n-1)+1,n\ge2[/math]
[math]d(1)=1,d(n)=d(n-1)^2+1,n\ge2[/math]
[math]f(1)=1,f(n)=f(n-1)+2n-2,n\ge2[/math]
[size=150]A sequence has [math]f(1)=120,f(2)=60[/math].[/size][br][br]Determine the next 2 terms if it is an arithmetic sequence, then write a recursive definition that matches the sequence in the form [math]f(1)=120, f(n)=f(n-1)+\underline{\hspace{.25in}}[/math] for [math]n\ge2[/math]
Determine the next 2 terms if it is a geometric sequence, then write a recursive definition that matches the sequence in the form [math]f(1)=120, f(n)=\underline{\hspace{.25in}} \cdot f(n-1)[/math] for [math]n\ge2[/math].
Each following hour, it decreases by a factor of [math]\frac{1}{2}[/math].
Do the bacteria populations make a geometric sequence? Explain how you know.