Transformations of f(x) = sin(x)_ADVMAT

Explore transformations of sin(x) by adjusting the sliders. What affect does each parameter seem to have on the shape of the graph?
Exploring the effect of the pronumeral 'a'
Set the pronumerals 'a' and 'b' so that it has value of 1. Ensure that the other pronumerals (h,k) have a value of zero.
Exploring the effect of the pronumeral 'a'
When the pronumeral 'a' has a value of 1 what do you notice?
Value of 'a' is greater than 1.
When the value of 'a' is greater than 1 what is the effect on [math]y=sinx[/math] ?
Set the value of a to equal 3.
Given that [math]f\left(x\right)=sinx[/math]. Describe how the graph of [math]g\left(x\right)=3sinx[/math] differs from [math]f\left(x\right)[/math].
Comparison of the coordinates of the original graph to the transformed graph.
a. For the graph [math]f\left(x\right)=sinx[/math], find the coordinates for [math]x=0,\frac{\pi}{6},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{5\pi}{4},\frac{3\pi}{2},\frac{11\pi}{6},2\pi[/math] . [br]b. For the graph of [math]g\left(x\right)=3sinx[/math], find the coordinates for [math]x=0,\frac{\pi}{6},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{5\pi}{4},\frac{3\pi}{2},\frac{11\pi}{6},2\pi[/math][br]c. How do the coordinates of [math]f\left(x\right)[/math]differ from [math]g\left(x\right)[/math]?
Investigating when the value of 'a' is between 0 and 1.
What effect does the value of 'a', when 'a' is a proper function have on [math]y=sinx[/math]?
Impact of assigning the pronumeral 'a' a value less than 0.
a. What effect does assigning a value of a=-1 have on the parent function [math]y=sinx[/math]?[br]b. What effect does assigning values for the pronumeral 'a', of [math]a[/math] <-1, have on the parent function [math]y=sinx[/math]?[br]c. What effect does assigning values for the pronumeral 'a', of -1<[math]a[/math]<0, have on the parent function [math]y=sinx[/math]?
Amplitude_ vertical dilation
Amplitude is defined as the vertical dilation of a trigonometric function. [br]a. What would be the amplitude of [math]f\left(x\right)=5sinx[/math]?[br]b. What would be the amplitude of [math]f\left(x\right)=\frac{sinx}{4}[/math]?[br]c. What would be the amplitude of [math]f\left(x\right)=-sinx[/math]?[br]d. What would be the amplitude of [math]f\left(x\right)=3sinx-1[/math]?
Exploring the effect of the pronumeral 'b'
Set the pronumerals 'a' and 'b' so that it has value of 1. Ensure that the other pronumerals (h,k) have a value of zero.
Exploring the effect of assigning a value of 2 to the pronumeral 'b'
Given that [math]f\left(x\right)=sinx[/math] and [math]g\left(x\right)=sin2x[/math], explain the effect of the assigning the pronumeral 'b' the value of 2, on [math]f\left(x\right)[/math].
Comparison of the coordinates of the original graph to the transformed graph.
a. For the graph [math]f\left(x\right)=sinx[/math], find the coordinates for [math]x=0,\frac{\pi}{6},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{5\pi}{4},\frac{3\pi}{2},\frac{11\pi}{6},2\pi[/math] . [br]b. For the graph of [math]g\left(x\right)=sin2x[/math], find the coordinates for [math]x=0,\frac{\pi}{6},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{5\pi}{4},\frac{3\pi}{2},\frac{11\pi}{6},2\pi[/math][br]c. How do the coordinates of [math]f\left(x\right)[/math]differ from [math]g\left(x\right)[/math]?
Exploring the effect of assigning a value of 1/2 to the pronumeral 'b'
When given that [math]f\left(x\right)=sinx[/math] and [math]g\left(x\right)=sin\frac{x}{2}[/math], explain the effect of the assigning the pronumeral 'b' the value of [math]\frac{1}{2}[/math], on [math]f\left(x\right)[/math]
Comparison of the coordinates of the original graph to the transformed graph.
a. For the graph [math]f\left(x\right)=sinx[/math], find the coordinates for [math]x=0,\frac{\pi}{6},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{5\pi}{4},\frac{3\pi}{2},\frac{11\pi}{6},2\pi,\frac{13\pi}{6},\frac{5\pi}{2},\frac{8\pi}{3},3\pi,\frac{13\pi}{4},\frac{7\pi}{2},\frac{23\pi}{6},4\pi[/math]. [br]b. For the graph of [math]g\left(x\right)=sin\frac{x}{2}[/math], find the coordinates for [math]x=0,\frac{\pi}{6},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{5\pi}{4},\frac{3\pi}{2},\frac{11\pi}{6},2\pi,\frac{13\pi}{6},\frac{5\pi}{2},\frac{8\pi}{3},3\pi,\frac{13\pi}{4},\frac{7\pi}{2},\frac{23\pi}{6},4\pi[/math][br]c. How do the coordinates of [math]f\left(x\right)[/math]differ from [math]g\left(x\right)[/math]?
Exploring the effect of assigning a value of -1 to the pronumeral 'b'
When given that [math]f\left(x\right)=sinx[/math] and [math]g\left(x\right)=sin\left(-x\right)[/math], explain the effect of the assigning the pronumeral 'b' the value of [math]-1[/math], on the parent function.
Comparison of the coordinates of the original graph to the transformed graph.
a. For the graph [math]f\left(x\right)=sinx[/math], find the coordinates for [math]x=0,\frac{\pi}{6},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{5\pi}{4},\frac{3\pi}{2},\frac{11\pi}{6},2\pi[/math]. [br]b. For the graph of [math]g\left(x\right)=sin\left(-x\right)[/math], find the coordinates for [math]x=0,\frac{\pi}{6},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{5\pi}{4},\frac{3\pi}{2},\frac{11\pi}{6},2\pi[/math][br]c. How do the coordinates of [math]f\left(x\right)[/math]differ from [math]g\left(x\right)[/math]?
Exploring the effect of assigning a value of -2 to the pronumeral 'b'
When given that [math]f\left(x\right)=sinx[/math] and [math]g\left(x\right)=sin\left(-2x\right)[/math], explain the effect of the assigning the pronumeral 'b' the value of [math]-2[/math], on the parent function.
Comparison of the coordinates of the original graph to the transformed graph.
a. For the graph [math]f\left(x\right)=sinx[/math], find the coordinates for [math]x=0,\frac{\pi}{6},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{5\pi}{4},\frac{3\pi}{2},\frac{11\pi}{6},2\pi[/math] . [br]b. For the graph of [math]g\left(x\right)=sin\left(-2x\right)[/math], find the coordinates for [math]x=0,\frac{\pi}{6},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{5\pi}{4},\frac{3\pi}{2},\frac{11\pi}{6},2\pi[/math][br]c. How do the coordinates of [math]f\left(x\right)[/math]differ from [math]g\left(x\right)[/math]?
Frequency_ horizontal dilation
Frequency is defined as the horizontal dilation of a trigonometric function and affects the period. [br]a. What would be the period of [math]f\left(x\right)=sin2x[/math]?[br]b. What would be the period of [math]f\left(x\right)=sin\frac{x}{4}[/math]?[br]c. What would be the period of [math]f\left(x\right)=2sin4x[/math]?[br]d. What would be the period of [math]f\left(x\right)=sin\left(-x\right)[/math]?
Exploring the effect on the parent function of changing the value of the pronumeral 'k'
In the function given above assign the value of 1 to the pronumerals 'a' and 'b' and assign the value of 0 to 'h'.[br][br]Note for the parent function [math]f\left(x\right)=sinx[/math] the centre of this function is [math]y=0[/math] as we can write the parent function as [math]f\left(x\right)=sinx+0[/math]. This is an important point of reference when describing the effect of changing the value of the pronumeral 'k'.
Exploring the effect of assigning a value of 1 to the pronumeral 'k'
Given that [math]f\left(x\right)=sinx[/math] and [math]g\left(x\right)=sinx+1[/math], explain the effect of assigning 'k' the value of 1 on the parent function [math]f\left(x\right)=sinx[/math].
Exploring the effect of assigning a value of -1 to the pronumeral 'k'
Given that [math]f\left(x\right)=sinx[/math] and [math]g\left(x\right)=sinx-1[/math], explain the effect of assigning 'k' the value of 1 on the parent function [math]f\left(x\right)=sinx[/math].
Comparison of the coordinates of the original graph to the transformed graph.
a. For the graph [math]f\left(x\right)=sinx[/math], find the coordinates for [math]x=0,\frac{\pi}{6},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{5\pi}{4},\frac{3\pi}{2},\frac{11\pi}{6},2\pi[/math] . [br]b. For the graph of [math]g\left(x\right)=sinx+1[/math], find the coordinates for [math]x=0,\frac{\pi}{6},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{5\pi}{4},\frac{3\pi}{2},\frac{11\pi}{6},2\pi[/math][br]c. How do the coordinates of [math]f\left(x\right)[/math]differ from [math]g\left(x\right)[/math]?
Comparison of the coordinates of the original graph to the transformed graph.
a. For the graph [math]f\left(x\right)=sinx[/math], find the coordinates for [math]x=0,\frac{\pi}{6},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{5\pi}{4},\frac{3\pi}{2},\frac{11\pi}{6},2\pi[/math] . [br]b. For the graph of [math]g\left(x\right)=sinx-1[/math], find the coordinates for [math]x=0,\frac{\pi}{6},\frac{\pi}{2},\frac{2\pi}{3},\pi,\frac{5\pi}{4},\frac{3\pi}{2},\frac{11\pi}{6},2\pi[/math][br]c. How do the coordinates of [math]f\left(x\right)[/math]differ from [math]g\left(x\right)[/math]?
Centre as a vertical translation
[math]g\left(x\right)=sinx+1[/math] is a transformation of the parent function [math]f\left(x\right)=sinx[/math]. How we describe the transformation is in reference to how the centre of the parent function [math]y=0[/math] is vertically translated up or down.
Centre as a vertical translation
A vertical translation is defined by the number of units the centre of the parent function is moved up or down. [br]a. What would be the vertical translation of [math]f\left(x\right)=sinx+2[/math]?[br]b. What would be the vertical translation of [math]f\left(x\right)=sinx+\frac{1}{2}[/math]?[br]c. What would be the vertical translation of [math]f\left(x\right)=sinx-3[/math]?[br]d. What would be the vertical translation of [math]f\left(x\right)=sinx-\frac{1}{4}[/math]?
Exploring the effect on the parent function of changing the value of the pronumeral 'h'
In the function given above assign the value of to the pronumerals 'a', 'b' and 'h' and assign the value of 0 to 'k'.[br][br]Note for the parent function [math]f\left(x\right)=sinx[/math] when considering the transformed function in the form of [math]g\left(x\right)=sin\left(x+k\right)[/math] the pronumeral 'k' represents a value which has been either added or subtracted from the x-coordinate.
Exploring the effect on the parent function of assigning a value to the pronumeral 'h'
Given that [math]f\left(x\right)=sinx[/math] and [math]g\left(x\right)=sin\left(x-\frac{\pi}{2}\right)[/math], explain the effect of assigning 'k' the value of [math]\frac{\pi}{2}[/math] on the parent function [math]f\left(x\right)=sinx[/math].
Exploring the effect on the parent function of assigning a value to the pronumeral 'h'
Given that [math]f\left(x\right)=sinx[/math] and [math]g\left(x\right)=sin\left(x-\pi\right)[/math], explain the effect of assigning 'k' the value of [math]\pi[/math] on the parent function [math]f\left(x\right)=sinx[/math].
Exploring the effect on the parent function of assigning a value to the pronumeral 'h'
Given that [math]f\left(x\right)=sinx[/math] and [math]g\left(x\right)=sin\left(x+\frac{\pi}{2}\right)[/math], explain the effect of assigning 'k' the value of [math]-\frac{\pi}{2}[/math] on the parent function [math]f\left(x\right)=sinx[/math].
Exploring the effect on the parent function of assigning a value to the pronumeral 'h'
Given that [math]f\left(x\right)=sinx[/math] and [math]g\left(x\right)=sin\left(x+\pi\right)[/math], explain the effect of assigning 'k' the value of [math]-\pi[/math] on the parent function [math]f\left(x\right)=sinx[/math].
Comparison of the coordinates of the original graph to the transformed graph.
a. For the graph [math]f\left(x\right)=sinx[/math], find the coordinates for [math]x=0,\frac{\pi}{2},\pi,\frac{3\pi}{2},2\pi,\frac{5\pi}{2},3\pi[/math] . [br]b. For the graph of [math]g\left(x\right)=sin\left(x-\frac{\pi}{2}\right)[/math], find the coordinates for [math]x=0,\frac{\pi}{2},\pi,\frac{3\pi}{2},2\pi,\frac{5\pi}{2},3\pi[/math][br]c. How do the coordinates of [math]f\left(x\right)[/math]differ from [math]g\left(x\right)[/math]?
Comparison of the coordinates of the original graph to the transformed graph.
a. For the graph [math]f\left(x\right)=sinx[/math], find the coordinates for [math]x=0,\frac{\pi}{2},\pi,\frac{3\pi}{2},2\pi,\frac{5\pi}{2},3\pi[/math] . [br]b. For the graph of [math]g\left(x\right)=sin\left(x+\frac{\pi}{2}\right)[/math], find the coordinates for [math]x=0,\frac{\pi}{2},\pi,\frac{3\pi}{2},2\pi,\frac{5\pi}{2},3\pi[/math][br]c. How do the coordinates of [math]f\left(x\right)[/math]differ from [math]g\left(x\right)[/math]?
Comparison of the coordinates of the original graph to the transformed graph.
a. For the graph [math]f\left(x\right)=sinx[/math], find the coordinates for [math]x=0,\frac{\pi}{2},\pi,\frac{3\pi}{2},2\pi,\frac{5\pi}{2},3\pi[/math] . [br]b. For the graph of [math]g\left(x\right)=sin\left(x-\pi\right)[/math], find the coordinates for [math]x=0,\frac{\pi}{2},\pi,\frac{3\pi}{2},2\pi,\frac{5\pi}{2},3\pi[/math][br]c. How do the coordinates of [math]f\left(x\right)[/math]differ from [math]g\left(x\right)[/math]?
Exploring the effects of pronumerals on the parent function tanx
a. For the graph [math]f\left(x\right)=sinx[/math], find the coordinates for [math]x=0,\frac{\pi}{2},\pi,\frac{3\pi}{2},2\pi,\frac{5\pi}{2},3\pi[/math] . [br]b. For the graph of [math]g\left(x\right)=sin\left(x+\pi\right)[/math], find the coordinates for [math]x=0,\frac{\pi}{2},\pi,\frac{3\pi}{2},2\pi,\frac{5\pi}{2},3\pi[/math][br]c. How do the coordinates of [math]f\left(x\right)[/math]differ from [math]g\left(x\right)[/math]?
Phase as a horizontal translation
The phase of a trigonometric function results in a horizontal translation of the trigonometric is defined by the number of radians the parent function is moved left or right of the y-axis. [br]a. What would be the horizontal translation of [math]f\left(x\right)=sin\left(x+\frac{3\pi}{2}\right)[/math]?[br]b. What would be the horizontal translation of [math]f\left(x\right)=sin\left(x-2\pi\right)[/math]?[br]c. What would be the horizontal translation of [math]f\left(x\right)=sin\left(x-\frac{\pi}{4}\right)[/math]?[br]d. What would be the horizontal translation of [math]f\left(x\right)=sin\left(x+2\pi\right)[/math]?
Exploring the effects of pronumerals on the parent function cosx
Exploring the effects of pronumerals on the parent function tanx
Close

Information: Transformations of f(x) = sin(x)_ADVMAT