IM Geo.2.1 Lesson: Congruent Parts, Part 1

What do you notice? What do you wonder?
[img][/img]
Triangle ABC is congruent to triangle DEF.
[math]\triangle ABC\cong\triangle DEF[/math][br][br][img][/img][br]Find a sequence of rigid motions that takes triangle [math]ABC[/math] to triangle[math]DEF[/math].
What is the image of segment [math]BC[/math] after that transformation?[br]
Explain how you know those segments are congruent.
Justify that angle[math]ABC[/math] is congruent to angle [math]DEF[/math]. You can use the applet below.[br]
For each figure, draw additional line segments to divide the figure into 2 congruent polygons. Label any new vertices and identify the corresponding vertices of the congruent polygons.
Use the applet below.
[list][size=150][*]Draw a triangle.[/*][*]Find the midpoint of the longest side of your triangle.[/*][*]Rotate your triangle [math]180^{\circ}[/math] using the midpoint of the longest side as the center of the rotation.[/*][*]Label the [b]corresponding [/b]parts and mark what must be congruent.[/*][/size][/list]
Make a conjecture and justify it.
What type of quadrilateral have you formed? 
What is the definition of that quadrilateral type?[br]
Why must the quadrilateral you have fit the definition?[br]

IM Geo.2.1 Practice: Congruent Parts, Part 1

When rectangle ABCD is reflected across line EF, the image is DCBA.
[img][/img][br]How do you know that segment [math]AB[/math] is congruent to segment [math]DC[/math]?
Triangle FGH is the image of isosceles triangle FEH after a reflection across line HF.
[img][/img][br]Select [b]all[/b] the statements that are a result of corresponding parts of congruent triangles being congruent.
Reflect right triangle ABC across line BC.
[img][/img][br]Classify triangle [math]ACA'[/math] according to its side lengths. Explain how you know.[br]
Triangles FAD and DCE are translations of triangle ABC
[img][/img][br]Select [b]all[/b] the statements that [i]must[/i] be true.
Triangle ABC is congruent to triangles BAD and CEA.
Explain why points [math]D,A,[/math] and [math]E[/math] are collinear.
Explain why line [math]DE[/math] is parallel to line [math]BC[/math].[br]
[img][/img][br]Identify a figure that is the result of a rigid transformation of quadrilateral [math]ABCD[/math].
Describe a rigid transformation that would take [math]ABCD[/math] to that figure.[br]

Information