Dette arbejdsark er en del af en eller flere andre GeoGebraBøger. Ændringer i arbejdsarket vil slå igennem i alle disse bøger. Ønsker du stadig at ændre det originale materiale, eller lave din egen kopi til denne GeoGebraBog i stedet?
Dette materiale er lavet af '{$1}'. Ønsker du at redigere det originale materiale eller at lave din egen kopi i stedet?
Dette arbejdsark er lavet af '{$1}' og du har ikke rettigheder til at redigere det. Ønsker du i stedet at lave din egen kopi af arbejdsarket og tilføje den til GeoGebraBogen?
Euler demostró que en cualquier triángulo el ortocentro, el circuncentro y el baricentro están alineados. Esta propiedad amplía su dominio de verdad para el centro de la cirncunferencia de los nueve puntos notables; que Euler no había demostrado para ese tiempo. En los triángulos equiláteros, estos cuatro puntos coinciden, pero en cualquier otro triángulo no lo hacen, y la recta de Euler está determinado por dos cualesquiera de ellos. El centro de la circunferencia de los nueve puntos notables se encuentra a mitad de camino a lo largo de la línea de Euler entre el ortocentro y el circuncentro , y la distancia desde el centroide de el circuncentro es un medio que desde el baricentro hasta el ortocentro.