IM 6.5.11 Practice: Dividing Numbers that Result in Decimals

Use long division to show that the fraction and decimal in each pair are equal.
[math]\frac{3}{4}[/math] and [math]0.75[/math]
[math]\frac{3}{50}[/math] and [math]0.06[/math]
[math]\frac{7}{25}[/math] and [math]0.28[/math]
[size=150]Mai walked [math]\frac{1}{8}[/math] of a 30-mile walking trail. How many miles did Mai walk? Explain or show your reasoning.[/size]
Use long division to find each quotient. Write your answer as a decimal.
[math]99\div12[/math]
[math]216\div5[/math]
[math]1,988\div8[/math]
[size=150]Tyler reasoned: “[math]\frac{9}{25}[/math] is equivalent to [math]\frac{18}{50}[/math] and to [math]\frac{36}{100}[/math], so the decimal of [math]\frac{9}{25}[/math] is 0.36.”[/size][br][br]Use long division to show that Tyler is correct.
Is the decimal of [math]\frac{18}{50}[/math] also 0.36? Use long division to support your answer.
Complete the calculations so that each shows the correct difference.
Use the equation [math]124\cdot15=1,860[/math] and what you know about fractions, decimals, and place value to explain how to place the decimal point when you compute [math]\left(1.24\right)\cdot\left(0.15\right)[/math].
Close

Information: IM 6.5.11 Practice: Dividing Numbers that Result in Decimals