
Didaktischer Kommentar
[b]Thema:[/b] Spezielle Vierecke (Parallelogramm, Raute)[br][b]Autor: [/b]Laura Hochreither[br][b]Gruppe:[/b] MB[br][b]Schule: [/b]NMS 27[br][b]Zielgruppe: [/b]7. Schulstufe[br][b][br]Vorkenntnisse:[br][/b][list][*]SuS können Flächenmaße richtig umwandeln[/*][*]SuS können Längenmaße richtig umwandeln[/*][*]SuS kennen diverse Fremdwörter (symmetrisch, normal, parallel)[/*][*]SuS wissen was Umfang bzw. Flächeninhalt bedeutet[/*][/list][br][b]Lernziele:[br][/b][list][*]Ich kenne die Eigenschaften vom Parallelogramm und der Raute[/*][*]Ich kenne die Flächeninhalts- und Umfangsformel für Parallelogramm und Raute[/*][*]Ich kann de Flächeninhalts- und Umfangsformeln anwenden[/*][*]Ich kann Textbeispiele zum Parallelogramm und zur Raute lösen[/*][*]Ich kann Angabestücke von einer Skizze ablesen[/*][*]Ich kann Flächen- bzw. Umfangsformeln mit Hilfe einer beschrifteten Skizze angeben[/*][*]Ich kann Umkehraufgaben zum Parallelogramm und zur Raute lösen[/*][/list]
Diagnosematerial_Vorlage
OA_Vorlage_02.05.2017
Fehleranalyse
Beispiel 1

[list][*]Der Schüler kennt die Eigenschaften des Parallelogramms nicht[/*][*]Der Schüler weiß nicht über die Symmetrieachsen der Raute bescheid[/*][*]Der Schüler hat Schwierigkeiten bei den Eigenschaften der Raute[/*][*]Dem Schüler fehlt oft die Vorstellung der besprochenen Flächen[/*][*]Der Schüler verwechselt die verschiedenen Vierecke[/*][/list]
Beispiel 4

[list][*]Der Schüler kann die fehlende Höhe des Parallelogramms nicht berechnen[/*][*]Eventuell hat der Schüler Probleme beim Umformen von Gleichungen[/*][/list]

[list][*]Dem Schüler fällt es schwer Angaben aus einer Skizze abzulesen[/*][*]Dem Schüler fällt es schwer Formeln aufzustellen[/*][/list]

[list][*]Der Schüler ist mit komplexeren Aufgaben überfordert[/*][*]Der Schüler tut sich schwer Angabestücke aus dem Text herauszulesen[/*][/list]
Allgemeine Analyse
[list][*]Dem Schüler fällt es im Unterricht schwer, selbstständig auf Formeln bzw. Eigenschaften zu kommen[/*][*]Eventuell liegt es daran, dass er im Unterricht nicht besonders aktiv ist[/*][*]Bekommt er eine Frage gestellt, fällt es ihm nicht leicht Antworten zu formulieren[/*][*]Dem Schüler fehlt die Motivation im Unterricht mitzumachen[/*][/list]
Fördermaterialien
Die Fördermaterialien beziehen sich hauptsächlich auf die Eigenschaften von Parallelogramm und Raute. Es müssen Eigenschaften als wahr bzw. falsch erkannt werden, aber auch selber formuliert werden. Hilfestellungen dafür gibt es durch die Skizzen und deren Beschriftungen.