Dale Copy of G.GGMD.3 Volume of Spheres

Volume of a Sphere
Notice that if you drag the slider, the volume of half a sphere (hemisphere) is equal to the volume of the cylinder minus the volume of the cone. So, half a sphere = [math]\pi[/math]r[sup]2[/sup]h - [math]\frac{1}{3}\pi[/math]r[sup]2 [/sup]h. Therefore, half a sphere = [math]\frac{2}{3}\pi[/math]r[sup]2[/sup]h. If half a sphere = [math]\frac{2}{3}\pi[/math]r[sup]2[/sup]h, then an entire sphere equals [math]\frac{4}{3}\pi[/math]r[sup]2 [/sup]h. And, a sphere's radius and height are equal, so the formula can be cleaned up to [math]\frac{4}{3}\pi[/math]r[sup]3[/sup]
Example #1. The radius is 9 and they used 3.14 for pi.
Example #1. The radius is 9 and they used 3.14 for pi.
Example #2. The radius is 8 and they used 3.14 for pi.
Example #2. The radius is 8 and they used 3.14 for pi.
You try #1. Find the volume of the sphere using either 3.14 or 22/7 for pi.
You try #2. Find the volume of this sphere using either 3.14 or 22/7 for pi.
You try #3. Find the volume of this sphere using either 3.14 or 22/7 for pi.
Answers to the you try problems.
Place your 3 answers below. All answers should be in cubic units![br]1.[br][br]2.[br][br]3.
Close

Information: Dale Copy of G.GGMD.3 Volume of Spheres