[br][table][br][tr][/tr][br][tr][br][td]Double Angle Formulas[/td][br][td]二重角公式(にじゅうかくこうしき)[/td][br][td]双角公式(shuāng jiǎo gōng shì)[/td][br][td]이중 각도 공식 (i-jung gakdo gongsik)[/td][br][/tr][br][tr][br][td]Sine[/td][br][td]サイン(さいん)[/td][br][td]正弦(zhèng xián)[/td][br][td]사인 (sain)[/td][br][/tr][br][tr][br][td]Cosine[/td][br][td]コサイン(こさいん)[/td][br][td]余弦(yú xián)[/td][br][td]코사인 (kosain)[/td][br][/tr][br][tr][br][td]Tangent[/td][br][td]タンジェント(たんじぇんと)[/td][br][td]正切(zhèng qiè)[/td][br][td]탄젠트 (tanjenteu)[/td][br][/tr][br][tr][br][td]Trigonometric Functions[/td][br][td]三角関数(さんかくかんすう)[/td][br][td]三角函数(sān jiǎo hán shù)[/td][br][td]삼각 함수 (samgak chuso)[/td][br][/tr][br][tr][br][td]Trigonometric Identities[/td][br][td]三角関数の恒等式(さんかくかんすうのこうとうしき)[/td][br][td]三角恒等式(sān jiǎo hán děng shì)[/td][br][td]삼각함수 정체성 (samgakhamsoo jeongchejung)[/td][br][/tr][br][tr][br][td]Pythagorean Identity[/td][br][td]ピタゴラスの定理(ぴたごらすのていり)[/td][br][td]勾股定理(gōu gǔ dìng lǐ)[/td][br][td]피타고라스 정리 (pitagoras jeongri)[/td][br][/tr][br][/table]
[br][table][br][tr][br][td][b]Factual Inquiry Questions[/b][br]What are the double angle formulas for sine, cosine, and tangent?[br][br]How can the double angle formulas be derived from the sum of angles formulas (HL)?[br][/td][br][br][td][b]Conceptual Inquiry Questions[/b][br]Why are double angle formulas important in simplifying expressions involving trigonometric functions?[br][br]How can double angle formulas be used to solve trigonometric equations that involve squared terms?[br][/td][br][br][td][b]Debatable Inquiry Questions[/b][br]Is the use of double angle formulas more efficient than other trigonometric identities in solving complex trigonometric problems?[br][/td][br][/tr][br][/table][br]
Guided Exploration: Discovering Trigonometric Identities[br][br]Objective: Match equivalent trigonometric expressions and uncover the double angle formulas and the Pythagorean identity.[br][br]Introduction: Trigonometry is full of patterns and identities that can simplify how we work with angles and sides of triangles. Today, we're going to explore some of these patterns.[br][br]Step 1: Initial Observations[br]- Look at the expressions from the applet. What do you notice about the results when you compare different expressions?[br]Step 2: Make Predictions[br]- Before matching, predict which expressions might be equivalent. What is your reasoning?[br]Step 3: Matching Game[br]- Begin matching expressions that you believe are equivalent. Discuss with your partner why you think they match.[br]
Step 4: Identify the Formulas[br]- Using the matches you've made, try to identify the expressions that seem to involve doubling an angle.[br][br]Question 2: Which expressions could represent the double angle formulas? Hint: Look for expressions where the angle is doubled (like[math]sin(2x)[/math]) and try to match them with their equivalent forms.[br]
Step 5: Explore the Pythagorean Identity[br]- Which expression from the applet adds up to [math]1[/math].They are linked to a famous trigonometric identity.[br][br]Question 3: Which expression pairs add up to [math]1[/math]? How do they demonstrate the Pythagorean identity [math]sin^2(x)+cos^2(x)=1[/math]? By considering a right triangle with hypotenuse [math]1[/math] can you prove this identity?
Step 6: Confirm Your Findings[br]- Use a calculator to confirm the equivalences you've found. Do the values agree with your predictions?[br][br]Step 7: Reflection[br]- Reflect on how the expressions relate to the double angle formulas and the Pythagorean identity.[br][br]Question 4: Can you write down the double angle formulas for sine and cosine using the expressions you've matched?
Conclusion: Share your findings with the class. Discuss how these identities can be useful tools in trigonometry.[br]
Watch the below video for the some worked examples of how these formulas are used, and how they appear in your formulae booklet.
If [math]sin(x)=\frac{3}{5}[/math], what is [math]cos^2(x)[/math]?
If [math]cos(x)=\frac{1}{2}[/math], what is [math]cos(2x)[/math]?
Given [math]sin(x)=\frac{1}{\sqrt{2}}[/math], what is [math]\sin(2x)[/math]?[br]
[b][u]Trig double angles and Pythagoran identity to solve trigonometric equations[br][br][/u][/b]Q22, Q23, Q24, Q25, Q28, Q29, Q30, Q31, Q32, Q35
Proving double angle identities. This will not examined but it's useful to know how these formulaes can be proven.
Why does [math]BE=2cos\theta[/math]?
Why is [math]\angle EAC[/math] [math]2\theta[/math]?
Why does [math]EF=\sin2\theta[/math]?
Why does [math]AF=\cos2\theta[/math]?
In question 3 you explained why [math]EF=\sin2\theta[/math]. Why is it also true that [math]EF=2\sin\theta\cos\theta[/math] ?
Explain why is [math]\cos2\theta+1=2\cos\theta\cos\theta=2\cos^2\theta[/math] ?