Nullstellen einer Parabel + Übung

Nullstellen
Manche Parabeln haben neben dem Scheitelpunkt besondere Punkte, eine [color=#1e84cc]Nullstelle[/color]. [br]Als Nullstelle wird die Stelle bezeichnet, an der der Graph die x-Achse schneidet. [br]Die Koordinaten einer Nullstelle sind daher immer: [color=#1e84cc][math]N=(x/0)[/math][/color].
Wie viele Nullstellen hat eine Parabel?
Durch die Schieberegler kannst du die Parabel verändern.[br]Untersuche, welchen Einfluss die verschiedenen Parameter für die Anzahl der Nullstellen haben.
Beantworte die Fragen, indem du die Schieberegler verstellst.
Wenn a größer als 0 ist, hat die Parabel nie eine Nullstelle.
Wenn die Parabel nach unten geöffnet ist, hat sie immer eine Nullstelle.
Eine nach oben geöffnete Parabel mit y[sub]s[/sub]>1 ist hat keine Nullstelle.
Der Parameter x[sub]s[/sub] hat nur einen Einfluss auf die Lage möglicher Nullstellen.
Die Normalparabel berührt die x-Achse im Punkt (0/0).[br]Auch ein Punkt bei dem die x-Achse nur berührt wird, ist eine Nullstelle.
Übungsaufgabe
Entscheide, wie viele Nullstellen die quadratische Funktion hat!
[math]f\left(x\right)=x^2+3[/math]
[math]f\left(x\right)=\left(x-3\right)^2[/math]
[math]f(x)=-(x+3)^2+5[/math]
Partnerarbeit: Verschiebe die Parabel mit Hilfe der Regler. Lies deinem Partner dann die jeweilige neue Funktionsgleichung vor und frage nach der Anzahl der Nullstellen!
Close

Information: Nullstellen einer Parabel + Übung