This applet walks through a famous geometric (area) argument for the limit as [math]\theta\longrightarrow0[/math] of [math]\frac{sin\left(\theta\right)}{\theta}[/math]=1. [br][br]Important note: This limit is only true if using radians for angle measure. In fact, we use radians in order to make this limit equal to 1!
This applet shows a geometric argument for the limit as [math]\theta\longrightarrow0[/math] of [math]\frac{sin\left(\theta\right)}{\theta}[/math] by zooming in on objects of length [math]sin\left(\theta\right)[/math] and [math]\theta[/math].
This applet walks through a famous geometric (area) argument for the limit as [math]\theta\longrightarrow0[/math] of [math]\frac{sin\left(\theta\right)}{\theta}[/math]
This applet walks through a famous geometric (area) argument for the limit as [math]\theta\longrightarrow0[/math] of [math]\frac{sin\left(\theta\right)}{\theta}[/math]