IM Geo.2.9 Practice: Side-Side-Side Triangle Congruence

A kite is a quadrilateral which has 2 sides next to each other that are congruent and where the other 2 sides are also congruent.
Given kite [math]WXYZ[/math], show that at least one of the diagonals of a kite decomposes the kite into 2 congruent triangles.
Mai has proven that triangle WYZ is congruent to triangle WYX using the Side-Side-Side Triangle Congruence Theorem.
Why can she now conclude that diagonal [math]WY[/math] bisects angles [math]ZWX[/math] and [math]ZYX[/math]?
WXYZ is a kite.
Angle [math]WXY[/math] has a measure of 133 degrees and angle [math]ZWX[/math] has a measure of 60 degrees. Find the measure of angle [math]ZYW[/math].
Each statement is always true.
Select [b]all[/b] statements for which the converse is also always true.
Prove triangle [math]ABD[/math] is congruent to triangle [math]CDB[/math].
Triangles ACD and BCD are isosceles.
[size=150]Angle [math]DBC[/math] has a measure of 84 degrees and angle [math]BDA[/math] has a measure of 24 degrees. [/size][br]Find the measure of angle [math]BAC[/math].
Reflect right triangle ABC across line AB.
Classify triangle [math]CAC'[/math] according to its side lengths. Explain how you know.
Close

Information: IM Geo.2.9 Practice: Side-Side-Side Triangle Congruence