A unit cube -[br][br][Volume; V[sub]0[/sub]=1 u[sup]3[/sup], Surface; S[sub]0[/sub]=6 u[sup]2[/sup], Edge length; E[sub]0[/sub]=12 u][br][br]- has a cube of side length L removed from one of its vertices (see left panel).[br][br]Drag the YELLOW dot to vary the size of the cut out cube.[br][br]The right panel shows the volume V/V[sub]0[/sub], the surface area S/S[sub]0[/sub] and the total edge length E/E[sub]0[/sub] of the remaining shape.[br][br]How do V/V[sub]0[/sub], S/S[sub]0[/sub] and E/E[sub]0[/sub] vary as functions of L ?