Unit 1 - Constructions

Congruent Segments
Given: [math]\overline{AB}[/math][br]Construct: A segment congruent to [math]\overline{AB}[/math][br][br][color=#ff00ff]General notes: If you can use the undo/redo arrows at the top right of the constructions window. If things get really messy and you need to start over, press your browser's refresh button. [br][/color][br]Procedure: [br]1. Use the line tool to draw line CD some space below [math]\overline{AB}[/math]. They should not intersect. [br]2. Use the Point On Object tool to plot point E on line CD.[br]3. Use the compass tool. To set the radius as length AB: [br] click point A. [br] Click point B. [br]4. Click point E (to center the compass at point E).[br]5. Mark the compass's point of intersection with the Intersect tool. It will label this point F. [br]6. You have constructed [math]\overline{AB}\cong\overline{EF}[/math].[br][br][u]Remember[/u]: [br][list][*][color=#ff0000]Given info: red[/color][/*][*][color=#6aa84f]Arcs utilized in construction: green[/color][/*][*][color=#0000ff]The final construction: blue[/color][/*][/list]
Congruent Angles
Given: [math]\angle ABC[/math][math]\angle ABC[/math][br]Construct: An angle congruent to [math]\angle ABC[/math][br][br][color=#ff00ff]General notes: To start over, press your browser's refresh button. [br][/color][br]Procedure: [br]1. Select the Ray tool. Draw ray DE such that point D is in the lower left of the construction window, and point E is in the lower right.[br]2. Use the Point On an Object tool and place point F on the shorter ray of [math]\angle ABC[/math].[br]3. Select the circle tool. [br]4. Click point B as the center.[br]5. Click point F as your radius.[br]6. Select the Intersect tool and mark point G where your circle intersects the longer side of [math]\angle ABC[/math].[br]7. Click point D as the center where you place the congruent circle. [br]8. Select the Intersect tool and mark point H where your circle intersects ray DE. [br]9. Select the Compass tool.[br]10. Anchor your compass at F. Open its radius to G. Translate this circle to be centered at H.[br]11. Use the intersect tool to mark where circle D intersects with circle H.[br]12. Use the ray tool to create ray DI. [math]\angle IDH\cong\angle ABC[/math][br][br][u]Remember[/u]: [br][list][*][color=#ff0000]Given info: red[/color][/*][*][color=#6aa84f]Arcs utilized in construction: green[/color][/*][*][color=#0000ff]The final construction: blue[/color][/*][/list]
Angle Bisector
Given: [math]\angle ABC[/math][math]\angle ABC[/math][br]Construct: A ray bisecting [math]\angle ABC[/math][br][br]General notes: [br]- Draw an arc = use compass[br]- With the same radius = use compass[br]- If lines or curves intersect = use intersect tool to label that point[br][br]Procedure: [br]Using what you learned about GeoGebra from the examples above and the constructions yesterday, bisect the angle below. [br][br][u]Remember[/u]: [br][list][*][color=#ff0000]Given info: red[/color][/*][*][color=#6aa84f]Arcs utilized in construction: green[/color][/*][*][color=#0000ff]The final construction: blue[/color][/*][/list]
Perpendicular Bisector
Given: [math][/math][math]\overline{AB}\bot CD[/math][br]Construct: The perpendicular bisector of [math]\overline{AB}[/math][br][br]General notes: [br]- Draw an arc = use compass[br]- With the same radius = use compass[br]- If lines or curves intersect = use intersect tool to label that point[br][br]Procedure: [br]Using what you learned about GeoGebra from the examples above and the constructions yesterday, create a perpendicular bisector to the segment AB below.[br][br][u]Remember[/u]: [br][list][*][color=#ff0000]Given info: red[/color][/*][*][color=#6aa84f]Arcs utilized in construction: green[/color][/*][*][color=#0000ff]The final construction: blue[/color][/*][/list]

Información: Unit 1 - Constructions