Proofing Problems: Lines & Angles

Example
[img][/img][br][math]AB[/math] intersects [math]CD[/math] at [math]O[/math] so that [math]\angle[/math]1is a right angle. Prove [math]\angle[/math]2 and [math]\angle[/math]3 are complementary.[br][br]Click 'Check My Answer" below for proofing guide using two-column proof method.
Q1
If two lines [math]AB[/math] and [math]CD[/math] intersect at point [math]E[/math], prove that [math]\angle AEC\cong\angle DEB[/math].
Q2
Given line [math]L\parallel M[/math] and a transversal [math]T[/math]. Prove that the alternate interior angles are congruent.
Q3
Given that [math]BD[/math] bisects [math]\angle ABC[/math], prove that [math]2\left(m\angle ABD\right)=m\angle ABC[/math].
Q4
If line [math]A\parallel B[/math] and line [math]C\bot A[/math], prove that [math]C\perp B[/math].
Close

Information: Proofing Problems: Lines & Angles