Integration by Parts

Integration by PartsIntegration by Parts is a special method of integration that is often useful when two functions are multiplied together but is also helpful in other ways.[br][br]∫u v dx = u∫v dx −∫u' (∫v dx) dx[list][*][b]u[/b] is the function u(x)[/*][*][b]v[/b] is the function v(x)[/*][*][b]u'[/b] is the [url=https://www.mathsisfun.com/calculus/derivatives-rules.html]derivative[/url] of the function u(x)[/*][/list][br][br]So we followed these steps:[list][*]Choose u and v[/*][*]Differentiate u: u'[/*][*]Integrate v: ∫v dx[/*][*]Put u, u' and ∫v dx into: [b]u∫v dx −∫u' (∫v dx) dx[/b][/*][*]Simplify and solve[/*][/list][br]In English we can say that [b]∫u v dx[/b] becomes:(u integral v) minus integral of (derivative u, integral v)

Information: Integration by Parts