Given vectors [math]\vec{m} = \langle –5, –3 \rangle[/math] and [math]\vec{n} = \langle –9, 2 \rangle[/math], find the vector difference [math]\vec{m} – \vec{n}[/math] in three ways: [math]\,\,\,\,\,[/math]a. [math]\,\,[/math]by placing them head-to-tail [math]\,\,\,\,\,[/math]b. [math]\,\,[/math]by using the Parallelogram Rule [math]\,\,\,\,\,[/math]c. [math]\,\,[/math]by using component-wise addition
[list=1] [*]Find the vector difference [math]\vec{m} – \vec{n}[/math] by placing them head-to-tail. [*]Find the vector difference [math]\vec{m} – \vec{n}[/math] using the Parallelogram Rule. [*]Find the vector difference [math]\vec{m} – \vec{n}[/math] using component-wise addition. [/list] This applet is provided by Walch Education as supplemental material for the [i]CCSS Integrated Pathway Honors Supplement for Mathematics II[/i]. Visit [url="http://www.walch.com"]www.walch.com[/url] for more information on our resources.