Inscribed Angle Theorems: Take 3!

[color=#cc0000][b]Students:[/b][/color][br]The directions for this activity can be found below the applet.
1.
Use the [b]Ray[/b] tool to construct the following: [br][br]Ray with [color=#666666][b]endpoint [i]B[/i] [/b][/color]that passes through [b][color=#1e84cc][i]A[/i].[/color][/b][br]Ray with [color=#666666][b]endpoint [i]B[/i] [/b][/color]that passes through [color=#1e84cc][b][i]C[/i].[/b][/color] [br][br]Hint: Click on the ray/line tool (middle button at the top), then click on endpoint B and make the line go through point A. Repeat for endpoint B and point C.
2.
This angle with [color=#666666][b]vertex [i]B[/i][/b][/color] you've just constructed is said to be an [b]inscribed angle of the circle[/b]. [br]This [b]inscribed angle [i]B[/i][/b] is said to intercept [color=#1e84cc][b]arc [i]AC[/i][/b][/color]. [br][br]Use the [b]Angle [/b]tool to find the measure of this inscribed angle [math]\angle ABC[/math]. (Click on the angle tool, then points A, B, and C). Write the angle measure below.
3.
Use the [b]Ray[/b] tool again to construct the following [b]central angle[/b]: [br][br]Ray with [color=#666666][b]endpoint [i]O[/i] [/b][/color]that passes through [b][color=#1e84cc][i]A[/i].[/color][/b][br]Ray with [color=#666666][b]endpoint [i]O[/i] [/b][/color]that passes through [color=#1e84cc][b][i]C[/i].[/b][/color]
4.
Use the [b]Angle[/b] tool to find the measure of this central angle [math]\angle AOC[/math]. Write the measure below.
5.
[b]How does the measure of the inscribed angle (#2) compare with the measure of the central angle (#5) [/b]that intercepts the [color=#1e84cc][b]same arc[/b][/color]? (Feel free to move [color=#1e84cc][b]points [i]A[/i][/b][/color] and [i][color=#1e84cc][b]C[/b][/color][/i] around!)
[b][size=100][size=150]Find the inscribed angle measure. [/size][/size][/b][br]If [math]m\angle AOC[/math] = [math]120^\circ[/math], what is the [math]m\angle ABC?[/math]
[size=150][b]Find the arc measure/central angle.[/b][br][/size]If m
Cerrar

Información: Inscribed Angle Theorems: Take 3!