Altitudes of a Triangle - Discovery

[size=150][b][color=#cc0000][size=200]Discovery[br][/size][/color][/b][/size][size=150][br][b]Play with the applet above. [/b][br]1. Drag the [color=#cc0000][b]Red Points[/b][/color] to change the shape of the triangle. [br]2. Drag the green [color=#38761d][b]"Slide Me!"[/b][/color] to observe the altitude of the triangle.[/size]
Altitude of a Triangle
[size=150][color=#cc0000][b]Response[/b][/color][br]Define in your own words the definition of [i][b]Altitude of a Polygon.[/b][/i][/size]
[size=150][b][color=#0000ff]======================= PART 2 ============================[/color][/b][/size]
[size=150][color=#cc0000][b]Steps of Finding an Altitude of a Triangle[/b][/color][br][br][color=#980000][b]Step 1: [/b][/color]Pick the [b]highest point (vertex)[/b] of the triangle, and the opposite side of the vertex is the [b]base[/b]. [br][br][color=#980000][b]Step 2:[/b][/color] Draw a line passing through points F and G. [icon]/images/ggb/toolbar/mode_join.png[/icon][br][color=#980000][b]Step 3:[/b][/color] Use the perpendicular line and select the base (line) you just drew. [icon]/images/ggb/toolbar/mode_orthogonal.png[/icon][br][color=#980000][b]Step 4:[/b][/color] Connect the base with the vertex. [br][br][color=#980000][b]Step 5:[/b][/color] Place a point in the intersection of the base and altitude. [br][br][color=#980000][b]Step 6:[/b][/color] Measure the height of the altitude. [icon]/images/ggb/toolbar/mode_distance.png[/icon][/size]
[size=150][b][color=#0000ff]======================= PART 3 ============================[/color][/b][/size]
[size=150][color=#cc0000][b]Altitude of Polygons[/b][/color][br][br]Use the altimeter to measure the height (altitude) of polygon A, B, C, D, and E. [br]Write your responses. [/size]
[size=150][b]Responses to "Altitude of Polygons"[/b][br][br]Alt. of A = [br]Alt. of B = [br]...[/size]
[size=150][b][color=#0000ff]======================= PART 4 ============================[/color][/b][/size]
[size=150][b][color=#cc0000]Leaning Tower of Pisa[/color][/b][br][br]The [b]Leaning Tower of Pisa[/b] or simply the [b]Tower of Pisa[/b] is a freestanding bell tower, of the cathedral of the Italian city of Pisa, known worldwide for its nearly four-degree lean, the result of an unstable foundation. [img]https://en.wikipedia.org/wiki/File:The_Leaning_Tower_of_Pisa_SB.jpeg[/img][/size]
[size=150][b][color=#cc0000]Question[/color][/b][br]Use the tool to find the height of the Left and Right Edge of the tower to the ground. Write down your response. [/size]
[size=150][b][color=#0000ff][justify][/justify]======================= PART 5 ============================[/color][/b][/size]
[size=150][b][color=#cc0000]Mount Everest - Earth's Highest Mountain[br][/color][/b][br][b]Mount Everest[/b] is Earth's [b]highest mountain above sea level[/b], located in the Mahalangur Himal sub-range of the Himalayas. The China–Nepal border runs across its summit point. Its [b]elevation (snow height) of 8,848.86 m (29,032 ft)[/b] was most recently established in 2020 by the Nepali and Chinese authorities. The top five highest peaks in the world are also located on Mt. Everest. [/size]
[size=150][b][color=#cc0000]Question[/color][/b][br]Find the height (altitude) of the five points of Mount Everest. [br][br]Response:[br](1) = [br](2) = [br]...[/size]
[size=150][b][color=#0000ff][justify][/justify]======================= EXIT TICKET============================[/color][/b][/size]
[size=150][b][color=#cc0000]Question 1[/color][/b][br]What is the angle of measurement between the altitude and the base of a polygon? Explain.[/size]
[size=150][b][color=#cc0000]Question 2[/color][/b][br]Does the highest point of a polygon is always used to measure the altitude of a polygon? Explain.[/size]
Cerrar

Información: Altitudes of a Triangle - Discovery