[size=85]Generating Elements of mesh modeling the surfaces of polyhedron, its dual image and the coloring of their edges and faces can be found in the [url=https://www.geogebra.org/m/kwjkrvhq]applet[/url]. [/size][br]
[b] [size=85] [url=http://dmccooey.com/polyhedra/TruncatedIcosidodecahedron.html]The great rhombicosidodecahedron[/url] :[/size][/b][br][size=85][table][tr][td][b]Vertices[/b]: [/td][td]120 (120[3])[/td][/tr][tr][td][b]Faces[/b]:[/td][td]62 (30 squares + 20 regular hexagons + 12 regular decagons)[/td][/tr][tr][td][b]Edges[/b]:[/td][td]180[/td][/tr][/table][/size]
[size=85]The elements of the [b]dual[/b] to the Biscribed Pentakis Dodecahedron(g=7)-[br] [b][url=http://dmccooey.com/polyhedra/BiscribedDisdyakisTriacontahedron.html]The Disdyakis Triacontahedron[/url][/b]. [br] [br][b]Vertices[/b]: 62 (30[4] + 20[6] + 12[10])[br][b]Faces[/b]: 120 (acute triangles)[br][b]Edges[/b]: 180 (60 short + 60 medium + 60 long)[/size]