Epsilon-Umgebung

Auf der x-Achse siehst du den Beginn einer geometrischen Folge a_n, n∈N_0. Die ersten beiden Folgenglieder a_0 und a_1 (1 und ½) sind bereits zu sehen. Durch vergrößern des Folgenindex n am Schieberegler, kannst du dir immer mehr Folgenglieder anzeigen lassen. Du wirst erkennen, dass es sich um eine Folge von Brüchen handelt, bei der sich der Nenner in jedem Schritt verdoppelt. [br][br](1, ½, ¼, …)[br][br]Um den 0-Punkt ist ein Kreis mit dem Radius ɛ (Epsilon). Diesen Radius kannst du mit dem Schieberegler verändern. Wählt ein bestimmtes ɛ aus und führt die Folge so lange fort, bis innerhalb der Epsilon-Umgebung mehr Folgenglieder liegen, als außerhalb.
1) Probiert noch kleinere ɛ. Könnt ihr ein ɛ finden, das so klein ist, dass innerhalb der Epsilon-Umgebung nicht mehr Folgenglieder passen als außerhalb?[br][br]Wenn ja: Welches ɛ?[br][br]Wenn nein: Überlegt in der Gruppe, was das über die Folge aussagen könnte?[br][br]2) Versucht ein Bildungsgesetz der Form a_n = ? für diese geometrische Folge anzugeben, wobei n ∈ N_0.

Information: Epsilon-Umgebung