Kopie von Slant Asymptotes

A slant asymptote is a non-horizontal and non-vertical line which graph of a function will approach, yet never cross.[br]Slant asymptotes occur in rational functions where the degree of the numerator function is exactly one more than the degree of the denominator function.[br]In the graph below, [math]f(x)[/math] is the numerator function and [math]g(x)[/math] is the denominator function.[br]The blue function being graphed is [math]f(x) / g(x)[/math].[br]The dotted red line is the slant asymptote of [math]f(x) / g(x)[/math].
[b]Type in different polynomial functions for [math]f(x)[/math] and [math]g(x)[/math].[/b][br][br][list=1][br][*]What conditions must be true for [math]f(x) / g(x)[/math] to have a slant asymptote?[br][br][*]With the conditions above fulfilled, use long division to divide [math]f(x) / g(x)[/math].[br][br][*]How do your results compare to the slant asymptote of [math]f(x) / g(x)[/math]?[br][/list]

Information: Kopie von Slant Asymptotes