Estimate parameter [color=#1e84cc][i]a[/i][/color] so that the matrix [i]B[/i] represents revolution about origin [i]O[/i] = (0,0). Find all fixed points and directions.[br][center][img][/img][/center]
1. method: All rotation about origin have matrix form R(Φ), where Φ is rotation angle. [br][br][img][/img][br]Comparing elements of matrices R(Φ) and B yields [math]sin\text{Φ}=\frac{\sqrt{2}}{2}\Rightarrow a=cos\text{Φ}=\frac{\sqrt{2}}{2}[/math].[br]2. method: Rotation is a direct isometry, hence |B|=1, i.e. [math]a^2+\frac{2}{4}=1[/math].[br]3. method (experimental): Use tool slider[icon]/images/ggb/toolbar/mode_slider.png[/icon]for unknown parameter [color=#1e84cc][i]a[/i][/color]. Define one parameter family of matrices B([color=#1e84cc][i]a[/i][/color]). [br][code]B={{a,-sqrt(2)/2},{sqrt(2)/2,a}}[/code][br]Draw arbitrary object [color=#1e84cc][i]A[/i][/color] (point, segment or picture) and its image [color=#1e84cc][i]A[/i][/color][color=#1e84cc]'[/color] - GeoGebra command [code]ApplyMatrix(B,A)[/code]. Observe the effect of changing the slider [color=#1e84cc][i]a[/i][/color] and estimate correct value for parameter [color=#1e84cc][i]a[/i][/color]. [br][br]Experimental method is efficient for determination of fixed point and directions. Compare the position of arbitrary movable point [i][color=#1e84cc]A[/color][/i] and its image [i][color=#1e84cc]A[/color][/i]. Find out the location where points coincide, [i][color=#1e84cc] A[/color][/i] = [color=#1e84cc][i]A[/i]'[/color]. There is the fixed point of transformation. The same method applyed on line [color=#1e84cc][i]f[/i][/color] gives you fixed direction. You should find the position where [i][color=#1e84cc]f[/color][/i] is parallel with image [color=#1e84cc][i]f'[/i][/color].[br][br][color=#444444][size=150]Fixed points x'=x[/size][/color][center][img][/img][/center]where E is identity matrix. First determine substraction [code]BE=B-Identity(2)[/code] and than use GeoGebra tool [code]ReducedRowEchelonForm(BE).[/code] This eliminates non diagonal elements by row operations (= Gaussian elimination).[center][img][/img][/center]Using back-substitution, unknowns [i]x, y[/i] can be solved for. Solution x = 0 and y = 0 gives only one fixed point FP = (0,0). [br][br]
Eigenvector [i]x[/i] of matrix [i]B[/i] has invariant direction in transformation defined by matrix [i]B.[br][br][center][img][/img][/center][/i][size=100]Matrix (B-λE) must be singular for non trivial solutions x, but Det(B-λE)=0 has no real solutin. Rotation has no fixed direction.[/size]