Construct an Inscribed Square in Circle A. Prove that the square has 4 congruent sides and 4 congruent angles.
Inscribed Square solution[br]1. Create a circle using the circle tool [icon]/images/ggb/toolbar/mode_sphere2.png[/icon].[br]2. Create a line through the center point A and point B on the circle using the line tool [icon]/images/ggb/toolbar/mode_join.png[/icon][br]3. Create point C to form the diameter BC on the circle using the point tool [icon]/images/ggb/toolbar/mode_point.png[/icon][br]4. Use the diameter to create a compass with the center at point B and with a center at points C.[br]5. Create the bisector of the diameter [icon]/images/ggb/toolbar/mode_join.png[/icon]using points D and E.[br]6. Put points F and G on the circle, then connect points B, G, C and F to create the square with the polygon tool [icon]/images/ggb/toolbar/mode_polygon.png[/icon].[br]7. Prove that the square has four equal sides and four right angles using the distance tool [icon]/images/ggb/toolbar/mode_distance.png[/icon]and angle tool [icon]/images/ggb/toolbar/mode_angle.png[/icon].[br][br]