[table][tr][td]A. [math](x-3)(x+5)=x^2+2x-15[/math][/td][td][img][/img][/td][/tr][tr][td]B. [math](x-1)(x^2+3x-4)=x^3+2x^2-7x+4[/math][/td][td][img][/img][/td][/tr][tr][td]C. [math](x-2)(?)=(x^3-x^2-4x+4)[/math][/td][td][img][/img][/td][/tr][/table]
[size=150]Priya wants to sketch a graph of the polynomial [math]f[/math] defined by [math]f(x)=x^3+5x^2+2x-8[/math]. [br]She knows [math]f(1)=0[/math], so she suspects that [math](x-1)[/math] could be a factor of [math]x^3+5x^2+2x-8[/math] and writes [math](x^3+5x^2+2x-8)=(x-1)(?x^2+?x+?)[/math][math](x^3+5x^2+2x-8)=(x-1)(?x^2+?x+?)[/math] and draws a diagram.[/size]
Write [math]f(x)[/math] as the product of [math](x-1)[/math] and another factor.[br]
Write [math]f(x[/math]) as the product of three linear factors.[br]
[math]A(x)=x^3-7x^2-16x+112,(x-7)[/math]
[math]B(x)=2x^3-x^2-27x+36,(x-\frac{3}{2})[/math]
[math]C(x)=x^3-3x^2-13x+15,(x+3)[/math][br]
[math]D(x)=x^4-13x^2+36,(x-2),(x+2)[/math][br](Hint: [math]x^4-13x^2+36=x^4+0x^3-13x^2+0x+36[/math])
[math]F(x)=4x^4-15x^3-48x^2+109x+30,(x-5),(x-2),(x+3)[/math]
Suppose we know [math](x^2-2x+5)[/math] is a factor of [math]x^4+x^3-5x^2+23x-20[/math]. [br]We could write [math](x^4+x^3-5x^2+23x-20)=(x^2-2x+5)(?x^2+?x+?)[/math].