コラッツ数列の連鎖長が100超えが15%もあるのはビックリだ。[br]でも、長さに規則性がないだろうか?[br]それを探るために、1000までの連鎖長をリスト化して見える化してみよう。[br][b][color=#9900ff]#=======================================================[/color][/b][br]lst=[x for x in 1:1000][br]lst |> mapping |> len |> println[br][b][color=#9900ff]#=======================================================[br][/color][/b][OUT][br][1, 2, 8, 3, 6, 9, 17, 4, 20, 7, 15, 10, 10, 18, 18, 5, 13, 21, 21, 8, 8, 16, 16, 11, 24, 11, 112, 19, 19, 19, 107, 6, 27, 14, 14, 22, 22, 22, 35, 9, 110, 9, 30, 17, 17, 17, 105, 12, 25, 25, 25, 12, 12, 113, 113, 20, 33, 20, 33, 20, 20, 108, 108, 7, 28, 28, 28, 15, 15, 15, 103, 23, 116, 23, 15, 23, 23, 36, 36, 10, 23, 111, 111, 10, 10, 31, 31, 18, 31, 18, 93, 18, 18, 106, 106, 13, 119, 26, 26, 26, 26, 26, 88, 13, 39, 13, 101, 114, 114, 114, 70, 21, 13, 34, 34, 21, 21, 34, 34, 21, 96, 21, 47, 109, 109, 109, 47, 8, 122, 29, 29, 29, 29, 29, 42, 16, 91, 16, 42, 16, 16, 104, 104, 24, 117, 117, 117, 24, 24, 16, 16, 24, 37, 24, 86, 37, 37, 37, 55, 11, 99, 24, 24, 112, 112, 112, 68, 11, 50, 11, 125, 32, 32, 32, 81, 19, 32, 32, 32, 19, 19, 94, 94, 19, 45, 19, 45, 107, 107, 107, 45, 14, 120, 120, 120, 27, 27, 27, 120, 27, 19, 27, 40, 27, 27, 89, 89, 14, 40, 40, 40, 14, 14, 102, 102, 115, 27, 115, 53, 115, 115, 71, 71, 22, 53, 14, 14, 35, 35, 35, 128, 22, 84, 22, 128, 35, 35, 35, 53, 22, 22, 97, 97, 22, 22, 48, 48, 110, 48, 110, 66, 110, 110, 48, 48, 9, 123, 123, 123, 30, 30, 30, 79, 30, 123, 30, 22, 30, 30, 43, 43, 17, 30, 92, 92, 17, 17, 43, 43, 17, 43, 17, 61, 105, 105, 105, 43, 25, 30, 118, 118, 118, 118, 118, 56, 25, 74, 25, 118, 17, 17, 17, 43, 25, 38, 38, 38, 25, 25, 87, 87, 38, 131, 38, 38, 38, 38, 56, 56, 12, 25, 100, 100, 25, 25, 25, 144, 113, 51, 113, 25, 113, 113, 69, 69, 12, 113, 51, 51, 12, 12, 126, 126, 33, 126, 33, 126, 33, 33, 82, 82, 20, 126, 33, 33, 33, 33, 33, 51, 20, 46, 20, 46, 95, 95, 95, 46, 20, 20, 46, 46, 20, 20, 46, 46, 108, 64, 108, 59, 108, 108, 46, 46, 15, 33, 121, 121, 121, 121, 121, 121, 28, 59, 28, 77, 28, 28, 121, 121, 28, 20, 20, 20, 28, 28, 41, 41, 28, 41, 28, 134, 90, 90, 90, 134, 15, 134, 41, 41, 41, 41, 41, 33, 15, 59, 15, 54, 103, 103, 103, 41, 116, 28, 28, 28, 116, 116, 54, 54, 116, 28, 116, 54, 72, 72, 72, 98, 23, 116, 54, 54, 15, 15, 15, 41, 36, 129, 36, 129, 36, 36, 129, 129, 23, 36, 85, 85, 23, 23, 129, 129, 36, 36, 36, 28, 36, 36, 54, 54, 23, 49, 23, 23, 98, 98, 98, 142, 23, 49, 23, 142, 49, 49, 49, 98, 111, 23, 49, 49, 111, 111, 67, 67, 111, 62, 111, 36, 49, 49, 49, 62, 10, 36, 124, 124, 124, 124, 124, 62, 31, 124, 31, 124, 31, 31, 80, 80, 31, 31, 124, 124, 31, 31, 23, 23, 31, 23, 31, 49, 44, 44, 44, 137, 18, 44, 31, 31, 93, 93, 93, 44, 18, 137, 18, 31, 44, 44, 44, 88, 18, 44, 44, 44, 18, 18, 62, 62, 106, 57, 106, 31, 106, 106, 44, 44, 26, 31, 31, 31, 119, 119, 119, 31, 119, 57, 119, 119, 119, 119, 57, 57, 26, 75, 75, 75, 26, 26, 119, 119, 18, 57, 18, 70, 18, 18, 44, 44, 26, 132, 39, 39, 39, 39, 39, 70, 26, 132, 26, 132, 88, 88, 88, 132, 39, 26, 132, 132, 39, 39, 39, 39, 39, 31, 39, 31, 57, 57, 57, 132, 13, 52, 26, 26, 101, 101, 101, 39, 26, 145, 26, 101, 26, 26, 145, 145, 114, 52, 52, 52, 114, 114, 26, 26, 114, 52, 114, 145, 70, 70, 70, 96, 13, 65, 114, 114, 52, 52, 52, 65, 13, 65, 13, 39, 127, 127, 127, 39, 34, 127, 127, 127, 34, 34, 127, 127, 34, 127, 34, 65, 83, 83, 83, 171, 21, 34, 127, 127, 34, 34, 34, 65, 34, 26, 34, 26, 34, 34, 52, 52, 21, 47, 47, 47, 21, 21, 47, 47, 96, 34, 96, 140, 96, 96, 47, 47, 21, 140, 21, 21, 47, 47, 47, 96, 21, 91, 21, 47, 47, 47, 47, 140, 109, 21, 65, 65, 109, 109, 60, 60, 109, 34, 109, 153, 47, 47, 47, 60, 16, 34, 34, 34, 122, 122, 122, 153, 122, 34, 122, 60, 122, 122, 122, 122, 29, 122, 60, 60, 29, 29, 78, 78, 29, 78, 29, 104, 122, 122, 122, 73, 29, 60, 21, 21, 21, 21, 21, 73, 29, 47, 29, 135, 42, 42, 42, 135, 29, 42, 42, 42, 29, 29, 135, 135, 91, 135, 91, 42, 91, 91, 135, 135, 16, 29, 135, 135, 42, 42, 42, 86, 42, 42, 42, 42, 42, 42, 34, 34, 16, 60, 60, 60, 16, 16, 55, 55, 104, 29, 104, 148, 104, 104, 42, 42, 117, 148, 29, 29, 29, 29, 29, 179, 117, 148, 117, 29, 55, 55, 55, 148, 117, 117, 29, 29, 117, 117, 55, 55, 73, 148, 73, 47, 73, 73, 99, 99, 24, 68, 117, 117, 55, 55, 55, 117, 16, 68, 16, 55, 16, 16, 42, 42, 37, 130, 130, 130, 37, 37, 130, 130, 37, 130, 37, 68, 130, 130, 130, 117, 24, 130, 37, 37, 86, 86, 86, 130, 24, 174, 24, 86, 130, 130, 130, 37, 37, 37, 37, 37, 37, 37, 29, 29, 37, 29, 37, 29, 55, 55, 55, 130, 24, 50, 50, 50, 24, 24, 24, 143, 99, 50, 99, 37, 99, 99, 143, 143, 24, 99, 50, 50, 24, 24, 143, 143, 50, 24, 50, 37, 50, 50, 99, 99, 112, 94, 24, 24, 50, 50, 50, 50, 112][br][br]これをみてもピンとこないのでgeogebraで視覚化してみよう。[br][br]xs=sequence(1000)で、x座標を1から1000までの整数で作る。[br]そして、ys=上にある1000個のデータ[br]でy座標とする。[br]最後にzip((p,q),p,xs,q,ys)をすると、2つのリストxsとysから要素p,qを取り出してその順序対ができる。[br]これで、関数とグラフが即出来上がりだ。[br][br]たとえば、連続する値で長さが同じ長さになる部分があることや、[br]長さが直線上にように分布しているような、うろこ状に見えるところが多くあるね。[br][br][color=#9900ff][b][u][size=150][size=200]質問:下のコラッツの連鎖長の分布になにか他に気づいたことはありますか?[/size][/size][/u][/b][/color]