In der ersten Phase des Workshops, der Einführung, wird das Schema des Räuber-Beute Modells gemeinsam mit den Schüler:innen in einem aktiven Prozess des Lehrer-Schülergesprächs und kleinen Partnerarbeiten eingeführt und folgenderweise erarbeitet:Vorwissen aktivieren: Verschiedene Wachstumsmodelle werden im Klassenverband als Möglichkeit zur Beschreibung der Entwicklung von Populationen wiederholt (lineare, exponentielles, logistisches und begrenztes Wachstum). Fragestellung: Basierend auf das Vorwissen wird die Frage: „Wie kann die Entwicklung zweier voneinander abhängiger Populationen beschrieben werden?“ in den Klassenraum gestellt. Entsprechende Ideen auf Seiten der Schüler:innen werden gesammelt und diskutiert. In diesem Zusammenhang wird auch nach Beispielen für solch voneinander abhängigen Populationen gesucht (z.B. Hase – Fuchs, Hai – Speisefisch, …)Einfaches Räuber-Beute-Modell aufstellen: Zunächst werden im Plenum Annahmen gesammelt, die man für die Beschreibung der Wechselwirkung der Populationen (Hai und Speisefisch) treffen kann. Dies geschieht durch Unterstützung einer PowerPoint, welche die Lehrkraft mit den Ideen der Schüler:innen ergänzt. Gegebenenfalls gibt die Lehrkraft unterstützende Fragestellungen, damit notwendige Annahmen abgeleitet werden können. Anschließend werden die Grenzfälle diskutiert, in denen entweder nur Räuber ohne Beute oder nur Beute ohne Räuber existiert. Dazu kann die Lehrkraft wieder entsprechende Fragen stellen. Die Schüler:innen sollten kurz in Partnerarbeit darüber diskutieren, bevor die Erkenntnisse im Plenum zusammengetragen werden. Anschließend wird der wechselseitige Einfluss beider Populationen aufeinander im Plenum diskutiert. Dabei werden notwendige Parameter, wie Geburtenrate, Sterberate und Fressrate eingeführt und festgehalten. Daraus wird die Wechselwirkung in Form eines Systems aus gekoppelten Differentialgleichungen mit den Schüler:innen gemeinsam erarbeitet. Es folgt ein kurzer geschichtlicher Input der Lehrperson über das sogenannte Lotka-Volterra Modell. Veranschaulichung und Interpretation: Um anschließend die Wechselwirkung der Populationen (Haie und Speisefische) veranschaulichen zu können, wird im Plenum die Differentialgleichung in eine Differenzengleichung umgeschrieben. Mit der rekursiven Darstellung ergibt sich nun eine Möglichkeit, Rekursionsglieder zu berechnen. Dazu zeigt die Lehrperson über den Beamer ein zugehöriges GeoGebra Applet (
https://www.geogebra.org/m/vwethmwy) her. Anschließend bearbeiten und probieren die Schüler:innen in Partnerarbeit dieses Appelt. Durch Variation der Parameter sollen entsprechende Auswirkungen diskutiert werden. Es folgt eine Ergebnissicherung der Erkenntnisse im Plenum. Die Interpretationen werden wieder auf PowerPoint verschriftlicht.