Right-Triangle Elements, Metric Relations and Pythagorean Theorem

Elements
Identifying of Similar Triangles
Metric relations in the right triangle
Mean Proportional or Geometric mean
Mean Proportional (or geometric mean) of the given segments m and n is the segment h which, with the given segments, form the following proportion: [br][br][b][center][math]\frac{m}{h}=\frac{h}{n}[/math][code][/code][/center][/b]Therefore,[br][br][b][center][math]h^2=m\times n[/math][code][/code][/center][/b]or[br][b][center][math]h=\sqrt(m\times n)[/math][code][/code][/center][/b][br]Thus, the following linguistic representation can be used to describe the metric relationship [br][br][b][center][math]h^2=m\times n[/math][code][/code][/center][/b][br]The height to the hypotenuse of a right triangle is the mean proportional between the segments into which it divides the hypotenuse.[br]
Task 2
Use a linguistic representation to represent the following metric relationship in the right triangle [br][br][b][center][math]b^2=a\times n[/math][code][/code][/center][/b]
Task 3
Use a linguistic representation to represent the following metric relationship in the right triangle [br][br][b][center][math]b \times c=a\times h[/math][code][/code][/center][/b]
Pythagorean theorem
Task 4
Use a linguistic representation to represent the Pythagorean theorem [br][br][b][center][math]a^2=b^2+c^2[/math][code][/code][/center][/b]
Close

Information: Right-Triangle Elements, Metric Relations and Pythagorean Theorem