Mean Proportional (or geometric mean) of the given segments m and n is the segment h which, with the given segments, form the following proportion: [br][br][b][center][math]\frac{m}{h}=\frac{h}{n}[/math][code][/code][/center][/b]Therefore,[br][br][b][center][math]h^2=m\times n[/math][code][/code][/center][/b]or[br][b][center][math]h=\sqrt(m\times n)[/math][code][/code][/center][/b][br]Thus, the following linguistic representation can be used to describe the metric relationship [br][br][b][center][math]h^2=m\times n[/math][code][/code][/center][/b][br]The height to the hypotenuse of a right triangle is the mean proportional between the segments into which it divides the hypotenuse.[br]
Use a linguistic representation to represent the following metric relationship in the right triangle [br][br][b][center][math]b^2=a\times n[/math][code][/code][/center][/b]
Use a linguistic representation to represent the following metric relationship in the right triangle [br][br][b][center][math]b \times c=a\times h[/math][code][/code][/center][/b]
Use a linguistic representation to represent the Pythagorean theorem [br][br][b][center][math]a^2=b^2+c^2[/math][code][/code][/center][/b]