Uniform flow past a circular cylinder with circulation

Consider the stream function defined as[br][center][math]\psi=U\left(1-\frac{a^2}{x^2+y^2}\right)-\frac{\Gamma}{4\pi}\log\left(x^2+y^2\right)[/math][/center][justify]where [math]\Gamma[/math] is arbitrary, and represents the circulation about the cylinder.[br] [br]The resulting flow is shown in the following simulation, with a cylinder of radius [math]a=1[/math], circulation [math]-10\pi\le\Gamma\le10\pi[/math], and speed [math]-1.3\le U\le1.3[/math]. In this case, for convenience, we define the parameter[/justify][center][math]\gamma=\frac{\Gamma}{4\pi\cdot U\cdot a}[/math][/center]Observe what happens when you change the values of the parameter [math]\gamma[/math].
Question 1:
Describe the flow when [math]\gamma=0[/math].
Question 2:
Describe the flow when [math]0<\gamma<1[/math].
Question 3:
Describe the flow when [math]\gamma>1[/math].
Question 4:
Describe the flow when [math]\gamma=1[/math].
Close

Information: Uniform flow past a circular cylinder with circulation