Mendifinisikan Fungsi

Terdapat beberapa cara mendefinisikan fungsi pada EMT, yakni:[br][list][*]Menggunakan format nama_fungsi := rumus fungsi (untuk fungsi numerik),[/*][*]Menggunakan format nama_fungsi &= rumus fungsi (untuk fungsi simbolik, namun dapat dihitung secara numerik),[/*][*]Menggunakan format nama_fungsi &&= rumus fungsi (untuk fungsi simbolik murni, tidak dapat dihitung langsung),[/*][*]Fungsi sebagai program EMT.[/*][/list]Setiap format harus diawali dengan perintah function (bukan sebagai ekspresi).[br]Berikut adalah adalah beberapa contoh cara mendefinisikan fungsi:[br][math]f\left(x\right)=2x^2+e^{sin\left(x\right)}[/math][br][br]>function f(x) := 2*x^2+exp(sin(x)) // fungsi numerik[br]>f(0), f(1), f(pi)[br]>f(a) // tidak dapat dihitung nilainya[br]Silakan Anda plot kurva fungsi di atas![br]>plot2d("f(x)",-10,10):
Berikutnya kita definisikan fungsi:[br][math]g\left(x\right)=\frac{\sqrt{x^{2-3x}}}{x+1}[/math][br]>function g(x) := sqrt(x^2-3*x)/(x+1)[br]>g(3)[br]>g(0)[br]>g(1) // kompleks, tidak dapat dihitung oleh fungsi numerik[br][br]Silakan Anda plot kurva fungsi di atas![br]>plot2d("g(x)",-20,20,-20,20):
>f(g(5)) // komposisi fungsi[br]>g(f(5))[br]>function h(x) := f(g(x)) // definisi komposisi fungsi[br]>h(5) // sama dengan f(g(5))[br][br]Silakan Anda plot kurva fungsi komposisi fungsi f dan g:[br][math]h\left(x\right)=f\left(g\left(x\right)\right)[/math][br]bersama sama kurva fungsi f dan g dalam satu koordinat[br]>plot2d("h(x)",-10,10,0,20):
silakan Anda plot kurva fungsi komposisi fungsi g dan f:[br][br][math]h\left(x\right)=f\left(g\left(x\right)\right)[/math][br][br]bersama-sama kurva fungsi f dan g dalam satu bidang koordinat[br]>function u(x) := g(f(x)) //definisi fungsi komposisi[br]>plot2d("u(x)", -5,5,0,5):
>plot2d("f(x)",-20,20,-20,20); plot2d("g(x)",>add):
>f(0:10) // nilai-nilai f(0), f(1), f(2), ..., f(10)[br]>fmap(0:10) // sama dengan f(0:10), berlaku untuk semua fungsi[br]>gmap(200:210)

Information: Mendifinisikan Fungsi