How exactly do we maximize the volume of the box?

Use the [b][color=#ff0000]red sliders[/color][/b] labeled "[i]l[/i]" and "[i]w[/i]" to adjust the length and width of the cardboard. [br][br]Use the [color=#ff7700][b]orange slider[/b][/color] labeled "[i]x" [/i]to adjust the cut-size of each square.[br][br]Toggle the [color=#ff00ff][b]pink button[/b][/color] to display coordinates ([i]x[/i], [i]V[/i]([i]x[/i])).[br][br]Toggle the [color=#6aa84f][b]green button[/b][/color] the display the graph of [i]V[/i]([i]x).[/i]
Volume as a Function of Cut Size
When will we achieve the maximum volume?[br][br]How do you know?[br][br][br][color=#0000ff][b]Share your thoughts on the Google Slides...[/b][/color]
What's its function?
Can we express the dimensions of the box in terms of the cut size, x?[br][br]Does there exist a function that represents the volume, V(x) in terms of x?[br][br]Are there any restrictions on the domain of V(x)? Explain.[br][br]

Information: How exactly do we maximize the volume of the box?