IM Geo.1.7 Lesson: Construction Techniques 5: Squares

Which one doesn’t belong?
[table][tr][td][img][/img][/td][td][img][/img][/td][/tr][tr][td][img][/img][/td][td][img][/img][/td][/tr][/table]
Use straightedge and compass tools to construct a square with segment AB as one of the sides.
Here is square ABCD with diagonal BD drawn:
[list][*]Construct a circle centered at [math]A[/math] with radius [math]AD[/math].[/*][*]Construct a circle centered at [math]C[/math] with radius [math]CD[/math].[br][/*][*]Draw the diagonal [math]AC[/math] and write a conjecture about the relationship between the diagonals[math]BD[/math] and [math]AC[/math].[br][/*][*]Label the intersection of the diagonals as point [math]E[/math] and construct a circle centered at [math]E[/math] with radius [math]EB[/math].[br][/*][/list][br]How are the diagonals related to this circle?
Use your conjecture and straightedge and compass tools to construct a square inscribed in a circle.
Use straightedge and compass moves to construct a square that fits perfectly outside the circle, so that the circle is inscribed in the square.
How do the areas of these 2 squares compare?
Close

Information: IM Geo.1.7 Lesson: Construction Techniques 5: Squares