IM Geo.2.8 Lesson: The Perpendicular Bisector Theorem

Which one doesn’t belong?
[table][tr][td][img][/img][/td][td][img][/img][/td][/tr][tr][td][img][/img][/td][td][img][/img][/td][/tr][/table]
Diego, Jada, and Noah were given the following task:
[size=150]Prove that if a point [math]C[/math] is the same distance from [math]A[/math] as it is from [math]B[/math], then [math][/math]C must be on the perpendicular bisector of [math]AB[/math].[br]At first they were really stuck. Noah asked, “How do you prove a point is on a line?” Their teacher gave them the hint, “Another way to think about it is to draw a line that you know [math]C[/math] is on, and prove that line has to be the perpendicular bisector.”[br][br]They each drew a line and thought about their pictures. Here are their rough drafts.[/size][br][br][table][tr][td][br][br]Diego’s approach:[br] “I drew a line through [math]C[/math] that was perpendicular to [math]AB[/math] and [br]through the midpoint of [math]AB[/math]. [br]That line is the perpendicular bisector of [math]AB[/math] and [math]C[/math] is on it,[br] so that proves [math]C[/math] is on the perpendicular bisector.”[/td][td][img][/img][/td][/tr][/table][table][tr][td]Jada’s approach:[br] “I thought the line through [math]C[/math] would probably go through [br]the midpoint of [math]AB[/math] so I drew that and labeled the midpoint [math]D[/math]. [br]Triangle [math]ACB[/math] is isosceles, so angles [math]A[/math] and [math]B[/math] are congruent, [br]and [math]AC[/math] and [math]BC[/math] are congruent. And [math]AD[/math] and [math]BD[/math] are congruent [br]because [math]D[/math] is a midpoint. [br]That made two congruent triangles by the Side-Angle-Side [br]Triangle Congruence Theorem. So I know angle [math]ADC[/math] and [br]angle [math]BDC[/math] are congruent, but I still don’t know [br]if [math]DC[/math] is the perpendicular bisector of [math]AB[/math]."[/td][td][img][/img][/td][/tr][/table][table][tr][td]Noah’s approach: [br]“In the Isosceles Triangle Theorem proof, [br]Mai and Kiran drew an angle bisector in their isosceles triangle, [br]so I’ll try that. I’ll draw the angle bisector of angle [math]ACB[/math]. [br]The point where the angle bisector hits [math]AB[/math] will be [math]D[/math]. [br]So triangles [math]ACD[/math] and [math]BCD[/math] are congruent, [br]which means [math]AD[/math] and [math]BD[/math] are congruent, [br]so [math]D[/math] is a midpoint and [math]CD[/math] is the perpendicular bisector."[/td][td][img][/img][/td][/tr][/table][br][size=150]With your partner, discuss each student’s approach.[/size][list][*]What do you notice that this student understands about the problem?[/*][/list]
[list][*]What question would you ask them to help them move forward?[/*][/list]
Using the ideas you heard and the ways you think each student could make their explanation better, write your own explanation for why [math]C[/math] must be on the perpendicular bisector of [math]A[/math] and [math]B[/math].[br]
[size=150]Elena has another approach: “I drew the line of reflection. If you reflect across C, then A and B will switch places, meaning A' coincides with B, and B' coincides with C.  will stay in its place, so the triangles will be congruent.”[/size][br][br]What feedback would you give Elena?
Write your own explanation based on Elena‘s idea.
Work on your own to make a diagram and write a rough draft of a proof for the statement:
If [math]P[/math] is a point on the perpendicular bisector of [math]AB[/math], prove that the distance from [math]P[/math] to [math]A[/math] is the same as the distance from [math]P[/math] to [math]B[/math].
With your partner, discuss each other’s drafts. Record your partner‘s feedback for your proof.
[list][*]What do you notice that your partner understands about the problem?[/*][/list]
[list][*]What question would you ask them to help them move forward?[/*][/list]
Close

Information: IM Geo.2.8 Lesson: The Perpendicular Bisector Theorem