IM Geo.3.5 Practice: Splitting Triangle Sides with Dilation, Part 1

What is the measure of angle A'B'C?
[img][/img]
Triangle DEF is formed by connecting the midpoints of the sides of triangle ABC.
[img][/img][br][br]The lengths of the sides of [math]DEF[/math] are shown. What is the length of [math]AB[/math]?
There is an angle ABC.
It is taken by a dilation with center [math]P[/math] and scale factor [math]\frac{1}{3}[/math] to angle [math]A'B'C'[/math]. The measure of angle [math]ABC[/math] is [math]21°[/math]. What is the measure of angle [math]A'B'C'[/math]?
Draw 2 lines that could be the image of line m by a dilation.
Label the lines [math]n[/math] and [math]p[/math].
Is it possible for polygon ABCDE to be dilated to figure VWXYZ?
[img]https://i.ibb.co/KGKw2c7/Geo-3-5-8.png[/img][br][br]Explain your reasoning.
Triangle XYZ is scaled and the image is X'Y'Z'.
[img][/img][br][br]Write 2 equations that could be used to solve for [math]a[/math]. 
Lin is using the diagram to prove the statement, “If a parallelogram has one right angle, it is a rectangle.”
[img][/img][br][br]Given that [math]EFGH[/math] is a parallelogram and angle [math]HEF[/math] is a right angle, write a statement that will help prove angle [math]FGH[/math] is also a right angle.
[size=150]Han then states that the 2 triangles created by diagonal [math]EG[/math] must be congruent.[/size][br]Help Han write a proof that triangle [math]EHG[/math] is congruent to triangle [math]GFE[/math].[br]
Close

Information: IM Geo.3.5 Practice: Splitting Triangle Sides with Dilation, Part 1