Twin, cousin, and sexy primes are of the forms (p,p+2), (p,p+4), (p,p+6) respectively, for p a prime.[br][br]A prime triplet is a set of three prime numbers of the form (p, p + 2, p + 6) or (p, p + 4, p + 6).[br][br]Many of you have done the Sieve of Eratosthenes with a 10x10 grid, use this grid to learn about prime patterns above. [br][br][url=https://www.geogebra.org/m/ycpt2nqs]ID Prime Family Names[br][/url]
Thanks rami for assistance on doing the coloring.[br][br]Highly interactive sieves of [url=https://mathsbot.com/activities/sieveOfEratosthenes]Eratosthenes[/url] are available via [url=https://mathsbot.com/]mathsbot.com[/url].[br][br]For more about prime number patterns above, see [url=https://en.m.wikipedia.org/wiki/Primorial_prime]Primorial Prime[/url] on Wikipedia. The first few primorial primes are [url=https://en.m.wikipedia.org/wiki/2_(number)]2[/url], [url=https://en.m.wikipedia.org/wiki/3_(number)]3[/url], [url=https://en.m.wikipedia.org/wiki/5_(number)]5[/url], [url=https://en.m.wikipedia.org/wiki/7_(number)]7[/url], [url=https://en.m.wikipedia.org/wiki/29_(number)]29[/url], [url=https://en.m.wikipedia.org/wiki/31_(number)]31[/url], [url=https://en.m.wikipedia.org/wiki/211_(number)]211[/url], [url=https://en.m.wikipedia.org/wiki/2309_(number)]2309[/url], [url=https://en.m.wikipedia.org/wiki/2311_(number)]2311[/url], 30029, 200560490131, 304250263527209, 23768741896345550770650537601358309 (i.e. the product of the first n primes).